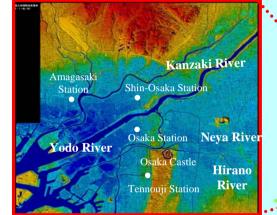


Adaptation Strategy for Climate Change in Japan

- Toward Water-disaster Adaptive society -

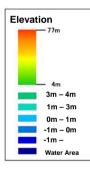
October 3, 2008

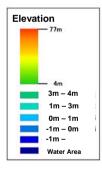

Toshio OKAZUMI

Director for International Water Management Coordination Ministry of Land, Infrastructure, Transport and Tourism Government of Japan

Japan is vulnerable to climate change

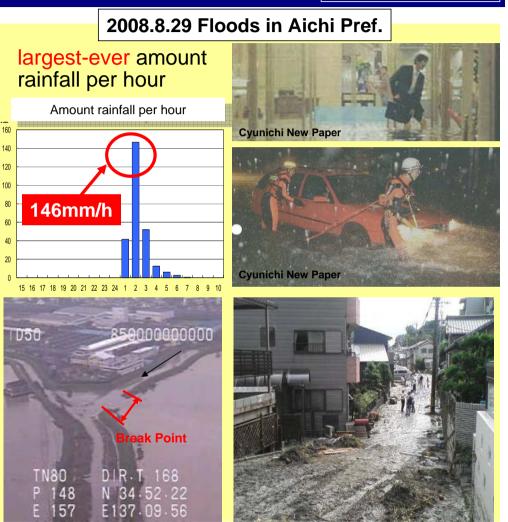
1. Present conditions and issues


Kinki Region



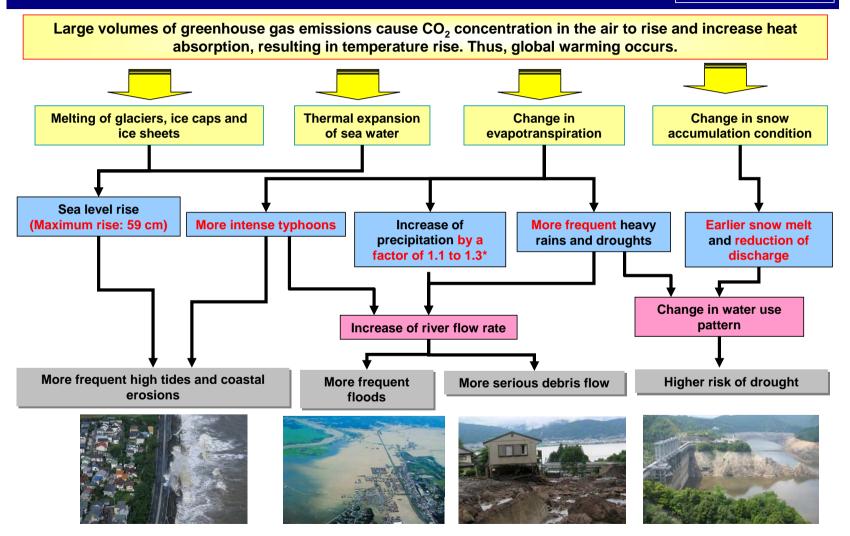
About 50% of population and about 75% of property on about 10% of land lower than water levels in rivers during flooding

Recent Flood disasters in Japan


1. Present conditions and issues

2008.7.28 Floods in Hyogo Pref.

Rapid water level rise of **134cm** in **10 minutes**


Recent Rainfall Trend

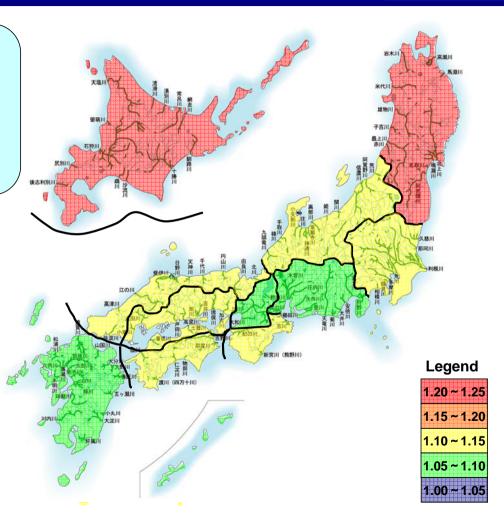
Annual total of hourly rainfall instances (from approx. 1,300 AMeDAS locations across Japan)

1. Number of instances of 50 mm or more rain in an hour 500 (instances/year) 400 300 200 1996~2005 1986~1995 1976~1985 88 instan 100 Average 234 verage 2 verage instan instanc 0 1976 '77 '78 '79 '80 '81 '82 '83 '84 '85 '86 '87 '88 '89 '90 '91 '92 '93 '94 '95 '96 '97 '98 '99 '00 '01 '02 '03 **'**05 2. Number of instances of 100 mm or more rain in an hour 10 1976~1985 1986~1995 1996~2005 (instances/year) instance Average – Average instances instance 5 $\left(\right)$ 1976 '77 '78 '79 '80 '81 '82 '83 '84 '85 '86 '87 '88 '89 '90 '91 '92 '93 '94 '95 '96 '97 '98 '99 '00 '01 '02 '03 '04 '05

Mechanism of global warming and climate change

2. Impacts of climate change

Estimation of increased rainfall in region

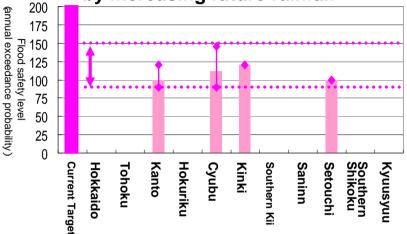

2. Impacts of climate change

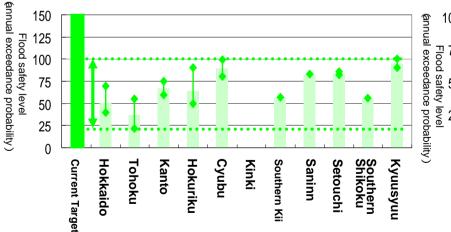
Future rainfall amounts were projected as a median value in each region of

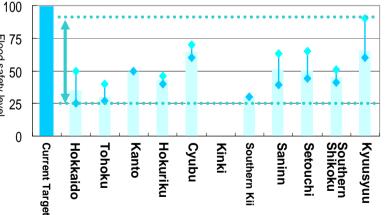
Average rainfall in 2080-2099 period Average rainfall in 1979-1998 period

The above equation was obtained based on the maximum daily precipitation in the year at each survey point identified in GCM20 (A1B scenario).

Hokkaido	1.24
Tohoku	1.22
Kanto	1.11
Hokuriku	1.14
Chubu	1.06
Kinki	1.07
Southern Kii	1.13
San-in	1.11
Setouchi	1.10
Southern Shikoku	1.11
Kyushu	1.07




Declining the degree of safety level

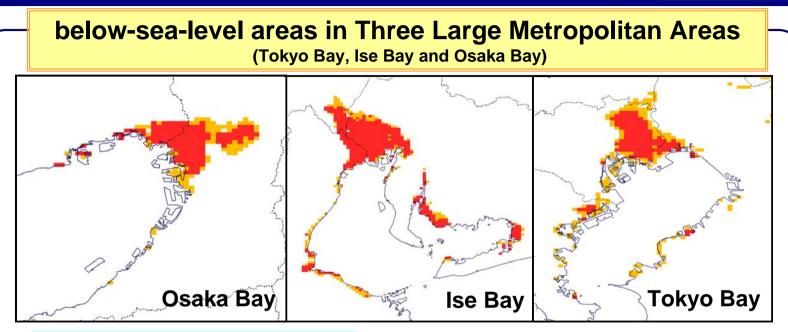

2. Impacts of climate change

Impact f	or flood safet	y level	by changing	rainfall	after 100 yea	rs
	1/200 (Currer	ntTarget)	1/150 (^{Curren}	tTarget)	1/100 (^{Currer}	ntTarget)
Region	Future flo	od saf	ety level(ann	ual exc	eedance probab	ility)
		Number of river system		Number of river system		Number of river system
Hokkaido	-	-	1/40 ~ 1/70	2	1/25 ~ 1/50	8
Tohoku	-	-	1/22 ~ 1/55	5	1/27 ~ 1/40	5
Kanto	1/90 ~ 1/120	3	1/60 ~ 1/75	2	1/50	1
Hokuriku	-	-	1/50 ~ 1/90	5	1/40 ~ 1/46	4
Cyubu	1/90 ~ 1/145	2	1/80 ~ 1/99	4	1/60 ~ 1/70	3
Kinki	1/120	1	-	-	-	-
Southern Kii	-	-	1/57	1	1/30	1
Saninn	-	-	1/83	1	1/39 ~ 1/63	5
Setouchi	1/100	1	1/82 ~ 1/86	3	1/44 ~ 1/65	3
Southern Shikoku	-	-	1/56	1	1/41 ~ 1/51	3
Kyusyu	-	-	1/90 ~ 1/100	4	1/60 ~ 1/90	14
All Japan	1/90 ~ 1/145	7	1/22 ~ 1/100	28	1/25 ~ 1/90	47

Declining the degree of safety against flood by increasing future rainfall

Circled number is number of calculated river system

Changes of peak runoff by future rainfall


2. Impacts of climate change

Estimations of future rainfall are about $\times 1.1 \sim \times 1.5$ compare to current rainfall. Peak runoff will be estimated about $\times 1.1 \sim \times 1.7$ compare to current peak runoff in 9 major rivers.

		Des	sign Rainfall	1.0	× 1.1 × 1.2	× 1.3	× 1.5
Ishikari Riv. (Hokkaido)	Design Level 1 / 1 5 0	Basin Area 12,697 k m ²	Peak Runoff of Design Flood 18,000 m ³ / s	20,500	23,000	25,600	30,700
Kitakami Riv. (Tohoku)	1 / 1 5 0	7,070 k m ²	13,600 m ³ / s	15,700	17,800	19,900	24,000
Tone Riv. (Kanto)	1 / 2 0 0	5,114 k m ²	About 21,000 m ³ / s (Calculated by 1/200)	23,600	25,900 27,90	0 31,800	
Kurobe Riv. (Hokuriku)	1 / 1 0 0	667 k m ²	7,200 m ³ / s	8,100	8,900 9,70	00 11,300	
Izumo Riv. (Cyubu)	1 / 100	541 k m ²	8,000 m³ ∕ s	9,000	9,900 10,9	000 12,800	
Kinokawa Riv. (Kinki)	1 / 1 5 0	1,574 k m ²	16,000 m ³ / s	17,600	19,700 21,6	00 25,400	
Oota Riv. (Cyugoku)	1 / 2 0 0	1,505 k m ²	12,000 m ³ / s	13,100 1	14,700 16,30	00 19,400	
Naga Riv. (Shikoku)	1 / 100	765 k m ²	11,200 m ³ / s	12,800	14,500	16,100	19,300
Kase Riv. (Kyusyu)	1 / 100	225.5 k m ²	3,400 m ³ / s	3,800	4,100 4,500	5,300	
0	% 20%	40% 6	60% 80% 1C	00%	120%	140%	160%

Impacts of sea level rise

2. Impacts of climate change

Areas with flood risks due to high tides will increase.

*Prepared by the River Bureau based on the national land-use digital information. *Shown are the areas at elevations lower than sea level shown in a three-dimensional mesh (1 km x 1 km). Total area and population are based on three-dimensional data. *No areas of surfaces of rivers or lakes are included.

*A premium of 60% is applied to the potential flood risk area and to the population vulnerable to flood risk in the case with a one-meter rise of sea level.

	Present	After sea level rise	Rate of increase
Area (km²)	559	861	1.5
Population (Million)	3.88	5.76	1.5

Basic concept of adaptation strategies

Climate change due to global warming is expected to induce the following phenomena in
coastal and low-lying areas.
-More frequent heavy rains and more intense typhoons
Eroquent and serious flood and sediment disasters

Frequent and serious flood and sediment disaste

-Sea level rise and more intense typhoons

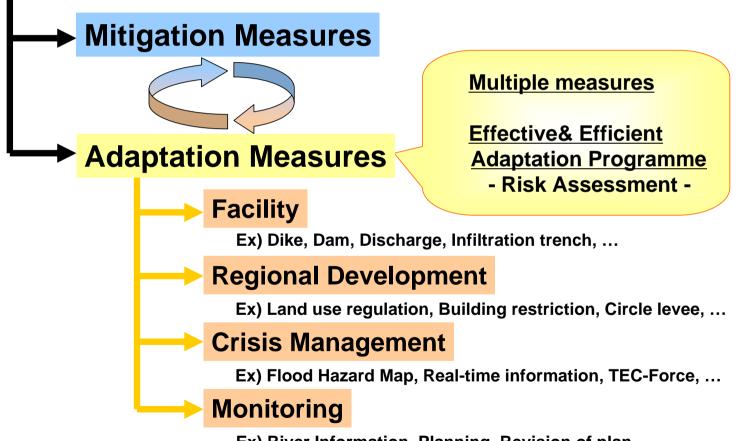
Frequent and serious high tides and coastal erosions

-Wider range of variation of rainfall intensity and change of river flow regime

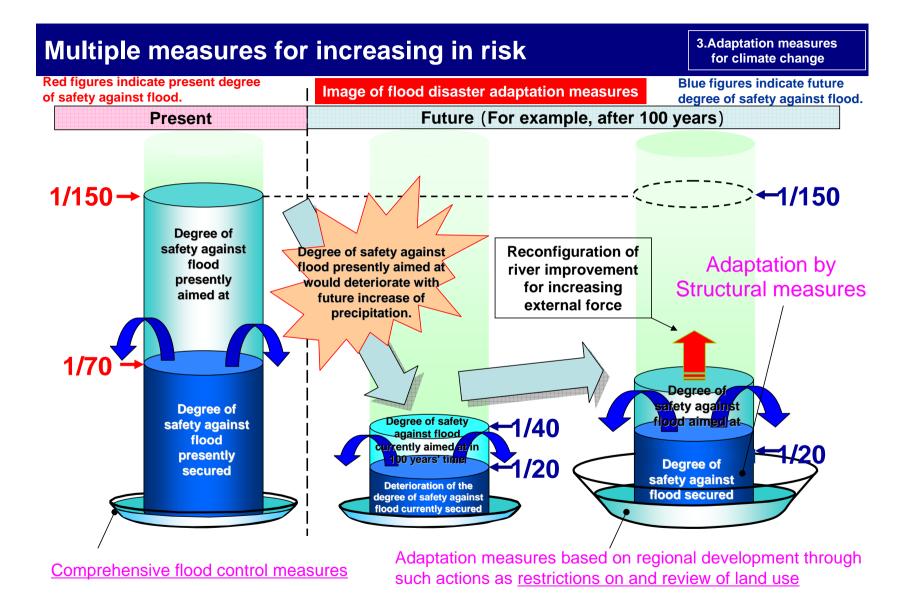
Frequent and serious droughts

Basic concept for Future ideal society

Combining mitigation and adaptation aiming at "Water -disaster adaptive society"

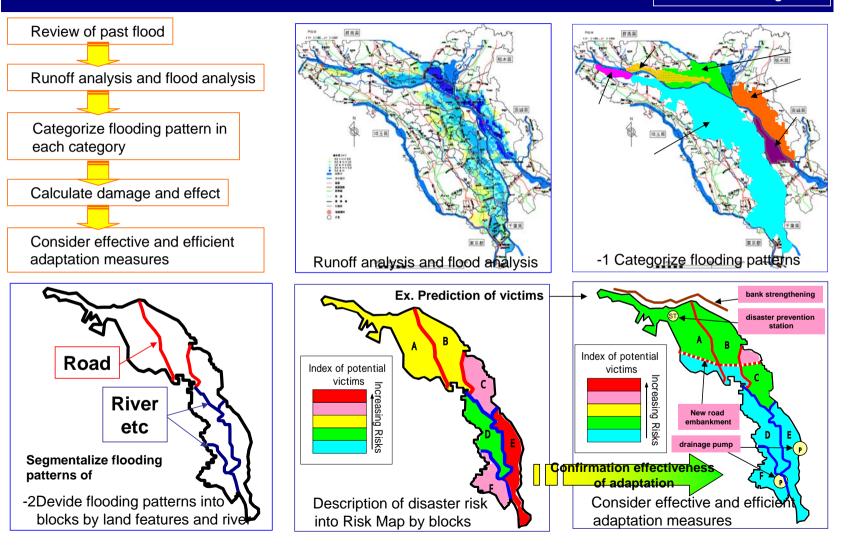

Basic direction of climate change adaptation strategies

- 1. <u>Adaptation measures to achieve "Zero casualty" should be considered,</u> because "Zero damage" from disasters is difficult.
- 2. In a nerve center like the Tokyo metropolitan area, intensive efforts should be made such as preventing from ceasing national function


Adaptation strategies

3.Adaptation measures for climate change

Counter-Measures for Climate Change

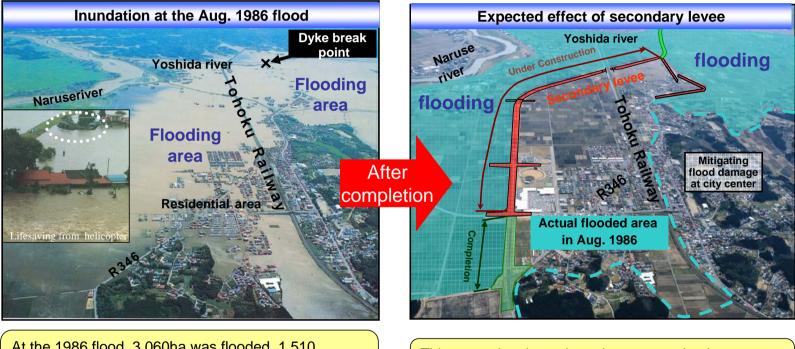


Ex) River Information, Planning, Revision of plan, ...

Process of effective and efficient adaptation program

3.Adaptation measures for climate change

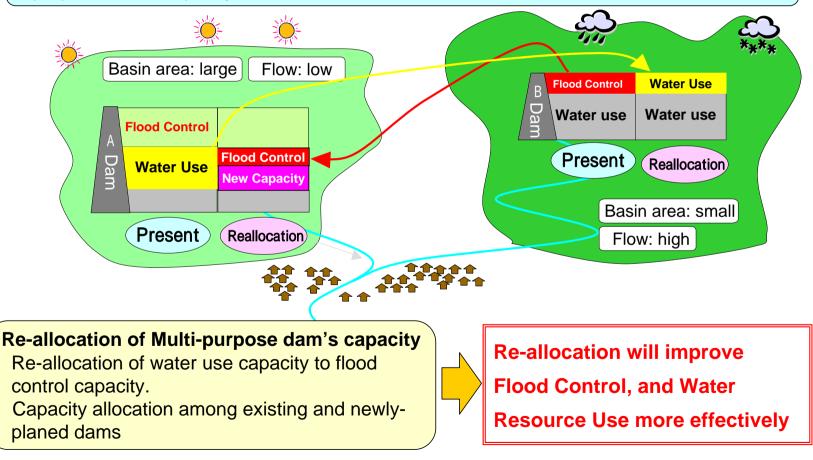
Adaptation by structures


3.Adaptation measures for climate change

Improvement of the reliability of structures, full and long-life utilization of existing structures

Adaptation by structures

Floodwater control with secondary levees in coordination with road construction to prevent expansion of damaged area



At the 1986 flood, 3,060ha was flooded, 1,510 houses were flooded above the floor level, and some parts of the area stayed under water up to 12 days.

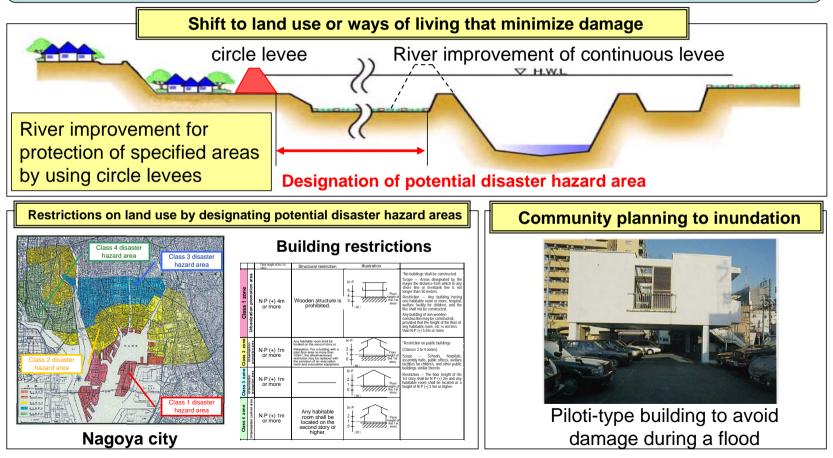
This secondary levee is under construction in coordination with road construction.

Adaptation by structures - Effective Use of existing structure

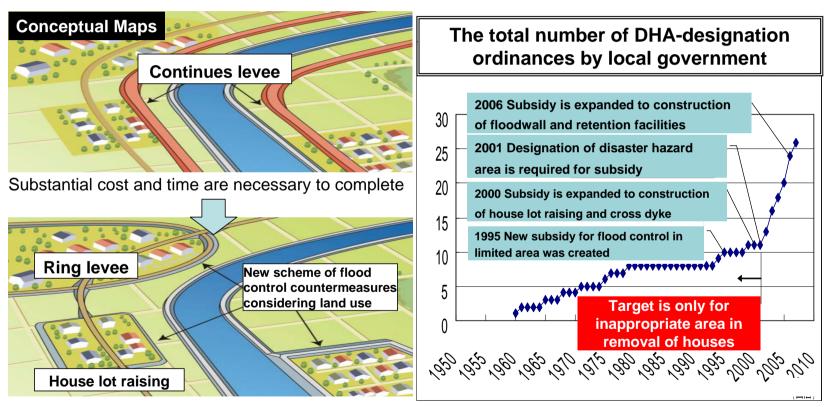
Based on the deep consideration on characteristics of river basin, re-allocation of Multipurpose dam's capacity can be more effective in terms of flood-control and water-use

Adaptation in river basin

3.Adaptation measures for climate change


- Storage, infiltration and forest conservation in river basin

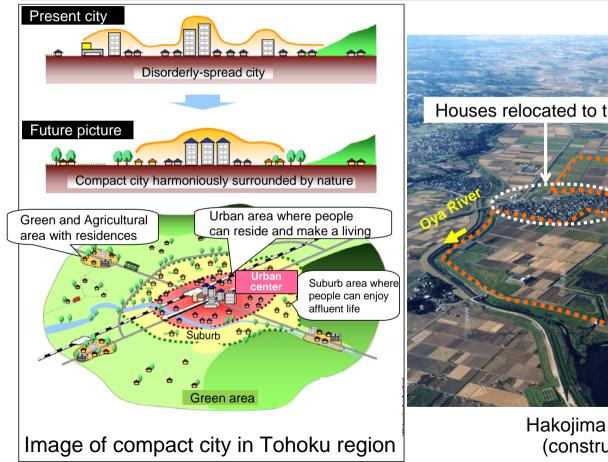
Adaptation measures in step with local community development

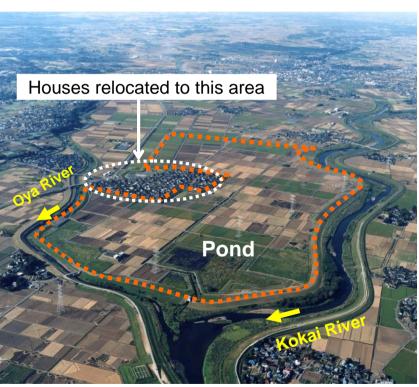

3.Adaptation measures for climate change

Response to floods that cannot be dealt with by facility-based measures, through land use or community development allowing inundation.

Adaptation measures in step with local community development

More local governments established ordinances including the designation of disaster hazard areas (DHA) for cost and time-effectiveness

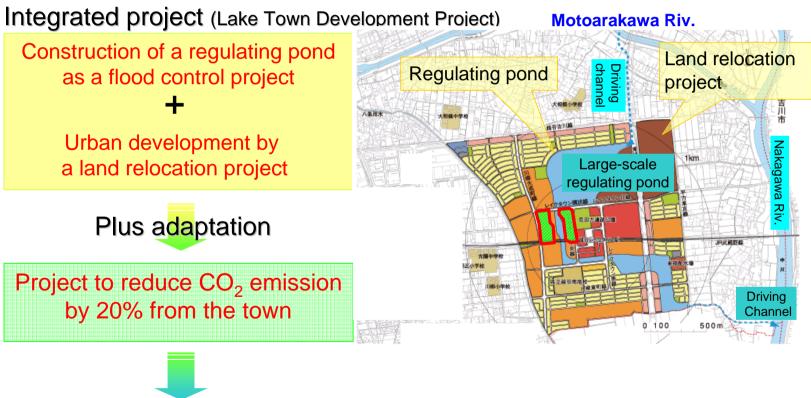



New counter-measures linked with land-use can be implemented faster (e.g. ring levee, house lot raising)

A new concept for urban development : Compact community easier to implement flood control measures

3.Adaptation measures for climate change

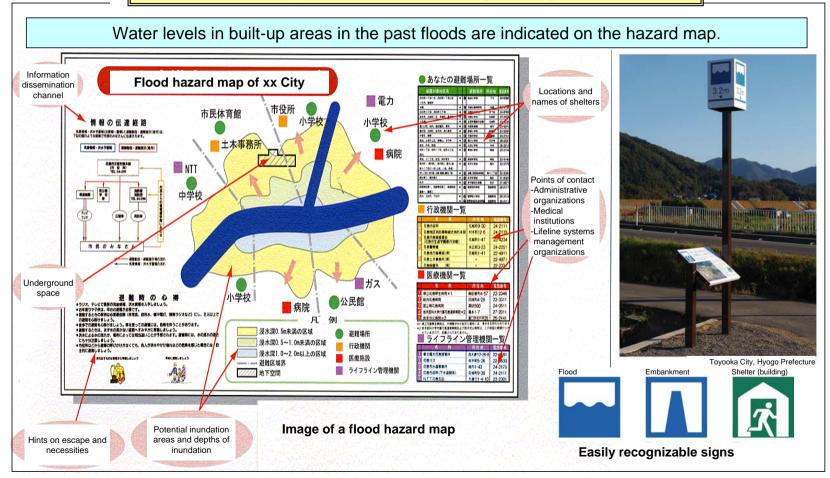
Compactly-built residences provide better energy efficiency and easier environment for flood control projects



Hakojima retarding basin (constructed in 1990)

3.Adaptation measures for climate change

Urban development should be promoted to build a low-carbon society which is also resilient to floods.

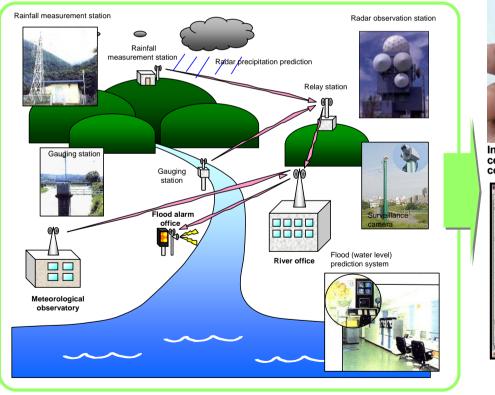


Urban renovation with both mitigation and adaptation

Adaptation measures with emphasis on crisis management

3.Adaptation measures for climate change

Share preliminary information concerning the degree of flood risk

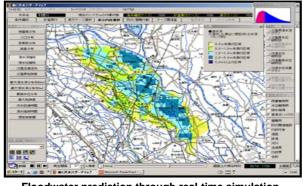


Adaptation measures with emphasis on crisis management

3.Adaptation measures for climate change

Share real-time information

Provision of rainfall amounts and water levels real-time via cellular phone, the Internet or local disaster prevention radio
Flood forecasting through real-time simulation



Information provision via cellular phone or personal computer

Delivery of an image to a TV screen

Floodwater prediction through real-time simulation

Adaptation measures with emphasis on Capacity Building & Public Awareness

3.Adaptation measures for climate change

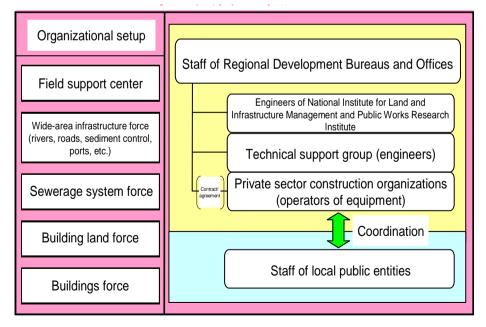
To organize local meetings and raise public awareness on preparedness on disaster

Education for pupils

Annual educational course for pupils on disaster preparedness at the Center To visit local meetings and explain to residents

Tsurumi River Administration Center

Disaster preparedness caravan



Adaptation measures with emphasis on crisis management

Reinforcement of actions in the initial stages of a disaster for minimizing damage and restoring infrastructure early, and enhancement of an organizational setup to achieve the goal

TEC-FORCE started in 2008

(Technical Emergency Control Force)

Activities

- -Investigation of damage
- -Quick repairing
- -Prediction of degree of damage risk
- -Planning of control measures
- -High-level technical guidance
- -Assistance in reconstruction

Conclusion

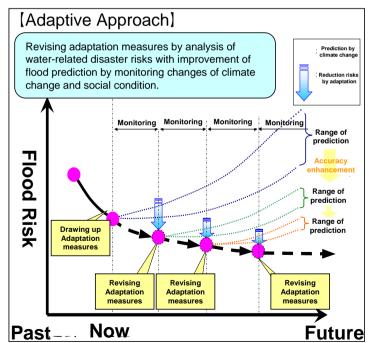
Prioritized investment to disaster prevention

✓ Investment prioritize areas related to disaster prevention for limitation of available capacity

Clarification of priority and Planning of road map

- Drawing up short-term, middle-term, long-term policy by [selection and concentration] as meaning of clarification of prioritized measures.
- ✓ Planning the road map by assessment of disaster risk in multiple measures (e.g. structure, land-use, preparedness)

Adoption adaptive approach


 Adopting adaptive approach of revising road map in response to future observation and cumulative knowledge

New technical development and contribution to the world

 Contributing to the world by transferring of new technology and Japanese expertise, policy, technology

Participatory approach

✓ Participatory approach is necessity. Informing to be understood easily to citizens.

