日本海における大規模地震に関する調査検討会 報告書

データ集2

[断層パラメータの設定]

平成26年9月

日本海における大規模地震に関する調査検討会

1-1. 断層パラメータの設定

1)設定断層モデルの概要

海底断層WGにおいて決定された断層範囲に基づいて、津波を計算するための津波断 層モデルを設定した。設定した津波断層モデルは、表1.1に示す 60 断層モデルである。

表1.1 設定した津波断層モデルの概要

領域	津波断層モデル	断層数
日本海【東北~北海道】	F01~F41	41
日本海【西日本】	F42~F60	19
	合計	60

図1.1 設定した断層モデルの規模別積算頻度分布(上図)および規模別頻度分布(下図)

2) 断層の形状

津波断層をモデル化するにあたり、断層面を矩形断層で近似した。近似の方法は以下の とおりである。

 ・断層の海底面トレース:海底断層WGにおいて設定された各断層範囲について、海底 断層WGにおいて認定した断層線の端点を結ぶ直線を断層面 の海底面への延長(海底面トレース)とする。断層線の分布が 直線状でない場合には、複数の線分に分割する。

・断層上端の深さ:各断層の海底面トレースの平均水深+1kmとする。

・断層下端の深さ:地質構造区分を考慮して、以下のように設定する。

大陸地殻内 : 15km
 日本海東縁リフト内 : 18km
 日本海東縁リフト縁 : 15km
 海洋地殻/大陸地殻境界 : 18km
 海洋地殻/厚い海洋性地殻: 18km (もしくは 25km)

・走向:断層海底面トレースの走向とする。

- ・傾斜:東傾斜および西傾斜の断層については、構造探査による反射面から、以下の4
 区分で傾斜角を設定する。
 傾斜角の区分:30度、45度、60度、90度
- ・すべり角:各断層位置における圧縮応力軸を断層面に投影した角度をすべり角とする。
 圧縮応力場のデータは、Terakawa and Matsuura (2010)を用いた。
- ・断層幅:断層上端と下端の深さから傾斜角を考慮して算出する。ただし、断層のアス ペクト比(断層長さ/断層幅)が2.0未満とならないようにする。

・断層長さ:断層海底面トレースの長さとする。

図 2.1 断層モデル海底面トレースの設定例(断層 F18) 海底断層線(オレンジ線)の端点を結ぶように断層モデルの海底面への延長 (海底面トレース、黒線)を設定する

図 2.2 断層上端深さの設定例

津波の計算のため、断層運動による海底の地殻変動量をOkada(1992)により求めて、 津波の初期水位分布とした。Okada(1992)では半無限弾性体における地殻変動量を求め るプログラムであり、3次元的な地形での地殻変動量を求めることは出来ない。そのため、 各地点の地殻変動量を求める際には、設定した TP 基準の断層上端深さをそのまま計算に用 いるのではなく、その地点の水深を基準とした断層上端深さを算出して地殻変動量の計算 に用いた。ただし、断層上端の深さが海底地形の水深よりも浅い地点では、断層上端深さ を 0km として地殻変動量を計算した。図 2.3 に海底面トレースが断層上端深さよりも浅い 場合を示す。

なお、初期水位を求める際には、Tanioka and Satake (1996)に従い、水辺成分の地殻変動の水位への影響を考慮した。

海底断層 F23

図2.3 海底面トレースが断層上端深さを下回る場合(茶線:海底地形、青線:上端深さ)

図 2.4 断層モデル設定案

図 2.5 断層モデル設定案(北海道)

図 2.6 断層モデル設定案(北陸~東北)

3) 断層の平均すべり量

2-1)断層すべり量の設定方法

・平均すべり量: 断層の平均すべり量は、以下のスケーリング式に基づいて設定する。 1)断層の面積が推定できる場合 断層面積に基づくスケーリング式 ① µ式:平均的な地震規模を与える式 ② σ式:危険側の地震規模を与える式 2)断層の面積が推定できない場合 断層長さに基づくスケーリング式

¹入倉孝次郎・三宅弘恵(2001):シナリオ地震の強震動予測、地学雑誌、110、849-875.

8.5

8.0

6.5

7.0

Mw

7.5

6.0

上段:松田(1975)および内閣府(2013)による断層長さとMwの関係式 下段:本検討会による断層面積とMwの関係式(μ式、断層幅を最大 20km と仮定し た場合)

6.0

6.5

7.0

Mw

7.5

8.0

8.5

参考1)既往地震の平均すべり量について

日本海東縁部で発生した既往地震(1983年日本海中部地震および1993年北海道南西 沖地震)について、各研究者の断層パラメータを調べると、各モデルの平均すべり量の 平均値は4.5m程度である。また、+1 σの平均すべり量は6m程度である。

左: Mw と平均すべり量の関係、標準偏差の範囲をエラーバーで示した 右: 1983 年日本海中部地震と 1993 北海道南西沖地震の既往断層モデルの平均すべり量

		Mw		7.1	7.5	7.4	8.0	7.6	7.4	7.6	7.6	7.6	7.6	7.6	7.7		7.7	7.8	7.8	7.7		7.9		7.8		7 8				T.T		て計算した
		合計Mo [%]	(MM)	5.2E+19	1.9E+20	1.9E+20	1.3E+21	3.2E+20	1.8E+20	2.7E+20	2.9E+20	2.7E+20	3.4E+20	3.3E+20	5.0E+20		5.0E+20	5.5E+20	7.4E+20	4.1E+20		7.6E+20		6.3E+20		7 2F+20				4.8E+20		イ×10 ¹⁰ と
		平均 すべり量	(m)	3.50	4.50	3.50	7.95	1.10	1.50	4.00	4.75	3.30	3.64	3.66	4.87		3.50	4.61	4.50	2.00		6.07		4.60		624				3.12		±率は <i>u</i> =3
		合計面積	(km ²)	434	1250	1568	4800	8500	3500	2000	1760	2400	2680	2650	3000		4200	3450	4800	0009		3675		4000		3358				4440		▲ 画 ※
		合計長さ	(km)	31	50	56	120	170	100	100	88	80	100	80	100		120	06	120	150		105		100		147				139		
		すべり量	(m)	3.50	4.50	3.50	7.95 7.95	1.10	1.50	4.00	4.75	3.30	3.30 6.60	3.00 4.00	7.60	3.03	3.50 3.50	6.00 4.00	5.00 4.00	2.00	6.80	4.60 6.80	4.00	5.00	0.00 5 7 1	1.1.0	12.00	2.26	0.52	6.07	3.10 3.79	>
表:	3.1	響 	(my) 往	耳 14	 15 10 10 10 10 10 10 10 10 10 10 10 10 10	0 28	₽₽ D津	50	35	20	20	30	30 14	30 35	30	30	40 30	35 40	40 40	40	35	35 35	40	40	4U	25	15	40	30	30	30	>
	波	斷層	(Hely)	341	50	2 ها	50 70	170	100	100	88	80	80 20	30 50	40 60	00	09 60	09 30	09 09	150	35	35 35	40	30	30	90 96	31	27	25	25	27 35	>
		すべり角	(度)	06	06	90	90 61	06	06	06	89	90	06 06	90 115	06	80	90 90	120 90	06 06	115	06	06	90	06	90	105	105	06	06	06	06	>
		傾斜	(度)	45	45	60	60 60	46	40	70	59	56	34 60	60 60	40 75	67	20 20	20 20	30 30	30	20	20 20	25	25	20	90 90	09	30	30	30	60 60	>
		走向	(度)	334	25	22	190 220	0	347	200	190	189	66	189 200	22 266	500	13 335	15 350	20 340	21	15	15 345	345	20	20	175	150	340	200	200	160 160	>
		深さ	(km)	1.0	1.0	1.0	2.0 2.0	-	0.0	0.0	0.0	0.0	1.0 4.0	1 1	2.0	3.0	0.0 0.0	0.0 0.0	1.0	2 1	0.0	0.0	0.0	0.0	10.0	5.0	5.0	0.0	0.0	0.0	0.0	2
		経度	(寛)	139.83	139.89	139.63	139.76 139.60	139.03	139.53	139.49	139.38	139.42	139.00 139.25	139.23 139.43	138.84	139.02	138.80 138.96	138.87 139.06	138.80 139.18	138.70	138.86	138.97 139.06	139.09	139.03	120.40	139.240	139.21	139.089	139.470	139.363	139.173	
		緯度	(度)	40.47	40.70	38.95	39.39 38.87	42.82	43.73	38.78	38.69	38.74	38.06 38.37	38.32 38.74	40.21 40.54	40.04	40.20 40.73	40.37 40.61	40.21 40.67	40.10	40.27	40.58 40.84	40.79	40.65	40.39	40.14	42.14	42.943	42.882	42.669	42.480 42 254	2
		文献		樋渡ほか(2002)	樋渡ほか(2002)	樋渡ほか(2002)	相田(1989)	Fukao&Furumoto(1975)	佐竹(1986)	Aki (1966)	Hirasawa (1965)	Abe (1975)	Satake & Abe (1983)	松橋ほか(1987)	相田(1984)		多田(1984)	田中ほか(1984)	Satake (1985)	kanamori & Astiz (1985)		Sato (1985)		小菅ほか(1986)		高橋ほか(1995)				谷岡ほか(1995)		
		港 澱		1704年岩館地震	1793年鰺ヶ沢地震	1804年象潟地震	1833年庄内沖地震	1010年抽杆菌装備	1340千个9330世纪辰				1964年新潟地震		1983年日本海中部地震							1003年十海道南西泊地震	1999年17月1日日日1999年19月1日日日1999年19月1日日日1999年19月1日日日19月1日日日19月1日日日19月1日日日19月1日日日19月1日日日19月1日日日19月1日日日日19月1日日日19月1日日日19月1日日日19月1日日日19月1日日日19月1日日日19月1日日日19月1日日日19月1日日日19月1日日日19月1日日日19月1日日日19月1日日19月1日日19月1日日19月1日日19月1日日19月1日日19月1日日19月1日日19月1日日19月1日日19月1日日19月1日日19月1日日19月1日日19月1日日19月1日日19月1日日19月1日日1月1日日1月1日日1月1日日1月1日日1月1日日1月1日日1月1日日1月1日日1月1日日1月1日日1月1日日1月1日日1月1日日1月1日日1日1月1日日1日1月1日日1日1月1日日1月1日日1月1日日1月1日日1月1日日11日日1月1日日1日1月1日日1日1月1日日1月1日日1日1月1日日1月1日日1月1日日1月1日日1月1日日1月1日日1日1月1日日1月1日日1月1日日1月1日日1月1日日1月1日日1月1日日1日1月1日日1日1月1日日1月1日日1日1月1日日1日1月1日日1日1月1日日1日1月1日日1日1月1日日1日日									

参考2)既往のスケーリング式

表 3.1 に示す既往研究のスケーリング式 1 ~ 6 を既往地震のデータと比較した。 式 1 : 松田 (1975) および武村 (1990) 式 2 : 松田 (1975) および内閣府 (2013) 式 3 : 武村 (1998) 式 4 : 大竹 (2002) 式 5 : 入倉・三宅 (2001) および Murotani et al. (2010)

式6:入倉・三宅(2001)および島田ほか(2013)

式1~4は、断層長さLと地震モーメントM₀の関係式である。これらの式を既往地震のパラメータと比較する際には、断層面積およびすべり量を以下のように与えた。

- ・断層面積S : $S = L \times W$ 、 $W = 1/2 \times L$ (ただし、 $W_{max} = 25km$)
- ・断層すべり量 D : $M_0 = \mu DS$ 、 $\log M_0 = 1.5M_w + 9.1$

式5および6は断層面積と地震モーメントM₀の関係式である。これらの式を既往地震の パラメータと比較する際には、断層長さおよびすべり量を以下のように与えた。

- ・断層長さL : L = S/W、 $W = 1/2 \times L$ (ただし、 $W_{max} = 25km$) ・断層すべり量 D : $M_0 = \mu DS$ 、 $\log M_0 = 1.5M_w + 9.1$
 - 表 3.2(1) 既往のスケーリング式

式	断層すべり量の設定方法
	 松田(1975)式で断層長さ L から M_jを算出
	$\log L = 0.6M_j - 2.9$
	② 武村(1990) ² 式で <i>M_j</i> から <i>M_w</i> を算出
式1	$M_w = 0.78M_j + 1.08$
	③ 断層面積 S を算出 ($S = L \times W$ 、 $W = 1/2 \times L$ (ただし、 $W_{max} = 25km$))
	断層すべり量 D を算出 $(M_0 = \mu DS, \log M_0 = 1.5 M_w + 9.1)$
	① 松田(1975)式で断層長さ L から M _j を算出
	$\log L = 0.6M_j - 2.9$
- <u>+</u> * 0	② 内閣府(2013)式で M _j から M _w を算出
式 2	$M_w = M_j - 0.3$
	③ 断層面積 S を算出 ($S = L \times W$ 、 $W = 1/2 \times L$ (ただし、 $W_{max} = 25km$))
	断層すべり量 D を算出 $(M_0 = \mu DS, \log M_0 = 1.5M_w + 9.1)$

² 武村雅之(1990):日本列島およびその周辺地域に起こる浅発地震のマグニチュードと地 震モーメントの関係、地震2、43、257-265.

表 3.2(2) 既往のスケーリング式

式	断層すべり量の設定方法										
	① 武村(1998) ³ 式で断層長さ <i>L</i> から <i>M</i> _w を算出										
	$\log L = 0.5M_w - 1.91 \qquad (M_w < 6.8)$										
	$\log L = 0.75M_w - 3.77 \qquad (6.8 \le M_w)$										
式3	※Mw = 6.8で両式を接続した場合、境界で不整合が生じる。本資料では、										
	両式が滑らかに接続されるように、L = 13kmで両式を使い分けた										
	② 断層面積 S を算出 ($S = L \times W$ 、 $W = 1/2 \times L$ (ただし、 $W_{max} = 25km$))										
	断層すべり量 D を算出 $(M_0 = \mu DS, \log M_0 = 1.5M_w + 9.1)$										
	① 大竹(2002) ⁴ 式で断層長さ <i>L</i> から <i>M</i> _w を算出										
<u></u> , = t 1	$\log L = 0.67 M_w - 3.07$										
式4	② 断層面積 S を算出 ($S = L \times W$ 、 $W = 1/2 \times L$ (ただし、 $W_{max} = 25km$))										
	断層すべり量 D を算出 $(M_0 = \mu DS, \log M_0 = 1.5M_w + 9.1)$										
	①入倉・三宅(2001)および Murotani et al.(2010)のスケーリング 式で断層										
	面積S (m ²)からM ₀ (Nm)を算出する										
	$M_0 = (S/2.23 \times 10^9)^{3/2} \times 10^{-7}$ ($M_w < 6.5$) 入倉・三宅 (2001)										
式5	$M_0 = (S/4.24 \times 10^5)^2 \times 10^{-7} \qquad (6.5 \le M_w < 7.4) \ \ \ \ \ \ \ \ \ \ \ \ \ $										
	$M_0 = 1.0 \times S \times 10^{11}$ (7.4 $\leq M_w$)										
	② 断層すべり量 D を算出 $(M_0 = \mu DS)$										
	断層長さ L を算出 ($L = S/W$ 、 $W = 1/2 \times L$ (ただし、 $W_{max} = 25km$))										
	①入倉・三宅(2001)および田島ほか(2013)のスケーリング 式で断層面積S (m ²)										
	からM ₀ (Nm)を算出する										
	$M_0 = (S/2.23 \times 10^9)^{3/2} \times 10^{-7} (M_w < 6.5)$ 入倉・三宅 (2001)										
式6	$M_0 = (S/4.24 \times 10^5)^2 \times 10^{-7} \qquad (6.5 \le M_w < 7.5) \ \ \ \ \ \ \ \ \ \ \ \ \ $										
	$M_0 = 0.877 \times S \times 10^{11} \qquad (7.5 \le M_w)$										
	② 断層すべり量 D を算出 $(M_0 = \mu DS)$										
	断層長さ L を算出($L = S/W$ 、 $W = 1/2 \times L$ (ただし、 $W_{max} = 25km$))										

³ 武村雅之(1998):日本列島における地殻内地震のスケーリング則 ・地震断層の影響および地震被害との関連、地震2、51、211-228.

⁴ 大竹政和(2002):日本海東縁の地震発生ポテンシャル,大竹政和・太田陽子・平朝彦 編,『日本海東縁の活断層と地震テクトニクス』、東京大学出版会、175-185.

図3.5 スケーリング式と既往地震データの比較(横ずれ・縦ずれ両地震)

図3.6 スケーリング式と既往地震データの比較(縦ずれ地震のみ)

図 3.7 Murotani et al. (2010) および田島ほか (2013) のスケーリング式

2-2)設定した断層モデル

本検討会のスケーリング式(µ式)によって設定した断層モデルのパラメータを表 3.3~ 3.4 に示す。

表3.3 矩形断層モデルの断層パラメータ【北海道および東日本】

(■:平均すべり量 (σ式) 6.0m、■:平均すべり量 (σ式) 5.0m以上)

津波断層 モデル	Mw	緯度	経度	上端深さ	下端深さ	走向	傾斜	すべり角	断層長さ	断層幅	合計 断層長さ	合計 断層面積	平均 すべり量
NO.		(JGD2000)	(JGD2000)	(km, TP-)	(km, TP-)	(度)	(度)	(度)	(km)	(km)	(km)	(km ²)	(m)
		44.8177	141.7569			340	45	78	46.5	7.0	-		
		45.2075	141.5506	1.1	6.0	351	45	84	47.9	7.0			
F01	7.88	40.0343	141.8155			342	30	84	46.5	18.0	162	4046	6.00
		45.2144	141.6126	6.0	15.0	351	30	88	47.9	18.0			
		45.6480	141.5137			342	30	84	67.6	18.0			
500	7.07	45.1870	140.9505		15.0	355	45	82	53.7	19.3	110	0000	F 10
FUZ	/.0/	45.6630	140.8859	1.4	15.0	23	45 45	89	27.6	19.3	118	2200	0.18
F03	7.23	44.7424	140.5945	1.2	15.0	19	45	105	44.6	19.5	45	868	2.91
F04	7.33	44.7263	139.6710	1.7	15.0	34	45	138	58.4	18.8	58	1096	3.28
F05	7.27	44.5380	139.3913	2.2	15.0	7	45	79	53.5	18.2	54	972	3.08
F06	7.61	44.3185	140.7304	1.5	15.0	217	45	82	42.0	19.1	105	1991	4.73
		44.0135	139 5556			176	45	54	29.0	17.9			
F07	7.42	44.3286	139.5818	2.4	15.0	201	45	76	21.6	17.9	76	1357	3.70
		44.1416	139.4856			167	45	48	25.3	17.9			
500		44.1467	140.1912		15.0	218	45	93	31.3	18.4		1000	0.75
F08	7.44	43.9197	139.9500	2.0	15.0	189	45	62	20.9	18.4	/5	1390	3.75
		43.7265	139.9100			347	40 30	103	23.1	27.9			
F09	7.61	43.8979	139.1166	4.0	18.0	2	30	104	29.2	27.9	72	2021	4.78
		44.1640	139.1298			347	30	103	18.8	27.9			
F10	7.47	43.6878	139.6577	3.4	18.0	194	45	98	73.2	20.6	73	1507	3.94
F11	/.48	43.9/32	139.33/3	4.2	18.0	180	45	67	/8.1	19.5	/8	1520	3.97
F12	7.43	43.4047	139.9794	1.8	15.0	161	45	65	29.3	18.7	73	1362	3.71
		42.9607	140.0946			177	45	79	19.7	18.7			
F13	7.34	42.6991	139.4869	3.0	18.0	172	45	70	53.4	21.2	53	1131	3.33
	7.00	43.4326	139.5697	3.6	10.0	195	45	99	43.3	20.3	175	0057	0.00
F14	7.83	43.0566	139.4315	3.6	18.0	192	45 60	111	79.6	20.3	1/5	3357	6.00
		43.4568	139.3648	3.8		173	45	97	45.2	20.1			
F15	7.83	43.0566	139.4315	3.8	18.0	192	45	111	79.6	20.1	177	3353	6.00
		42.3542	139.2327	3.8		167	60	105	51.9	16.4			
F16	7.61	41.7417	138.6545	4.6	18.0	14	30	94	75.9	26.7	76	2027	4.79
F17	7.78	41.0201	139.4008	2.8	18.0	350	45	96	81.0	21.5	135	2906	6.00
E10	7.71	40.8886	139.7757		15.0	7	45	95	100.0	18.1	127	0401	E E 2
FIO	7.71	41.7824	139.9293	2.2	13.0	348	45	87	37.4	18.1	137	2401	0.02
F19	7.77	40.8783	138.1776	4.3	18.0	33	30	110	58.6	27.3	101	2773	6.00
		41.4831	139.5716	2.0		151	45	68	30.8	18.4			
F20	7.80	41.2482	139.7485	2.0	15.0	199	45	102	47.2	18.4	170	3118	6.00
120	7.00	40.8430	139.5615	2.0	10.0	165	45	103	52.4	18.4	170	0110	0.00
		40.3887	139.7171	2.0		175	45	88	39.2	18.4			
F21	7.44	41.2482	139.7485	2.4	15.0	199	45	102	47.2	17.9	78	1392	3.76
F22	7.34	40.9131	139.5750	2.6	15.0	1	45	98	63.9	17.5	64	1119	3.31
F23	7 54	40.8430	139.5615	17	15.0	165	45	103	52.4	18.8	92	1725	4 30
	7.01	40.3887	139.7171		10.0	175	45	88	39.2	18.8	°-		1.00
F24	7.86	40.1054	138.9259	3.9	18.0	21	30	/4 80	53.7	28.2	132	3717	6.00
F25	7.29	40.2604	138,7649	3.7	18.0	205	45	116	49.5	20.2	49	998	3.12
F26	7.43	39.9742	139.5708	1.3	15.0	184	45	85	70.9	19.4	71	1374	3.73
F27	7.31	39.6464	138.9724	1.6	15.0	184	45	82	56.3	18.9	56	1066	3.23
E20	767	40.0114	138.8859		15.0	200	45	115	35.7	18.0	106	2260	E 10
F20	7.07	39.7079	138.7422	2.3	15.0	202	45	93	<u>39.7</u> 50.9	18.0	120	2209	0.10
F29	7.29	39.4819	138.3429	3.5	15.0	25	45	100	61.6	16.3	62	1006	3.13
F30	7,79	39.8052	139.8661	1.3	15.0	202	45	98	96.1	19.3	153	2951	6.00
501	7.50	39.0100	139.4516	1.0	15.0	247	45	120	56.5	19.3 10.5	0.0	1070	4.5.4
F31 F32	7.32	39.8052	139.8001	1.2	15.0	202	45	98	90.1 56.5	19.5	90 57	1076	4.54
F33	7.52	39.2937	139.3574	1.7	15.0	234	45	123	89.1	18.8	89	1680	4.22
F34	7.71	39.0485	139.7337	11	15.0	211	45	106	71.9	19.7	124	2439	5 4 5
505	7.50	38.4894	139.3120		15.0	197	45	97	52.0	19.7		1000	4.50
F35	7.58	38.9890	138.8728	1.4	15.0	200	45	96	99.I 31.3	19.2	99	1906	4.59
F36	7.31	38.6196	138.2837	1.5	15.0	36	45	97	23.6	19.1	55	1049	3.20
F37	7 4 4	38.8706	138.4683	17	15.0	227	45	130	33.9	18.8	75	1406	3 78
500	7.40	38.6578	138.1766	1.0	10.0	185	45	90	41.0	18.8		1474	0.00
F38	/.46	38.2341	138.7683	1.3	18.0	209	45	95	62.6	23.6	63	1474	3.89
F39	7.42	38.0658	138.0489	2.3	15.0	38	40	73	36.9	18.0	74	1336	3.67
E40	7 10	37.4338	138.2858	1.6	15.0	26	45	84	14.7	18.9	40	00.2	2 00
F40	7.19	37.5605	138.3581	1.0	15.0	338	45	66	27.7	18.9	42	003	2.00
F41	7.60	36.9922	137.5859	1.9	18.0	37	45	76	51.5	22.7	86	1947	4.66

表 3.4 矩形断層モデルの断層パラメータ【西日本】

(■:平均すべり量 (σ式) 6.0m、■:平均すべり量 (σ式) 5.0m以上)

津波断層 モデル	Mw	緯度	経度	上端深さ	下端深さ	走向	傾斜	すべり角	断層長さ	断層幅	合計 断層長さ	合計 断層面積	平均 すべり量	
NO.		(JGD2000)	(JGD2000)	(km, TP-)	(km, TP-)	(度)	(度)	(度)	(km)	(km)	(km)	(km ²)	(m)	
E40	7.00	38.0095	137.8939	0.5	15.0	201	45	78	37.7	17.7	50	000	2.10	
F42	7.28	37.6983	137.7436	2.5	15.0	241	45	112	18.1	17.7	50	988	3.10	
E42	7 5 7	37.3274	136.6811	11	15.0	64	45	113	48.3	19.7	04	1952	4.50	
143	7.57	37.5179	137.1753	1.1	13.0	55	45	105	45.9	19.7	54	1052	4.30	
F44	7 27	37.9886	137.2724	12	15.0	230	45	99	36.0	19.6	50	971	3.08	
1 44	1.21	37.7836	136.9640	1.2	10.0	267	45	145	13.7	19.6	50	371	0.00	
E45	7 1 8	37.2339	137.3179	2.0	15.0	228	45	103	16.2	18.3	43	782	2 77	
145	7.10	37.1319	137.1774	2.0	13.0	191	45	62	26.4	18.3	43	702	2.77	
F46	6.85	37.0610	136.5533	1.1	15.0	177	60	42	26.0	13.0	26	339	2.05	
F47	7.12	36.7282	136.0648	1.4	15.0	30	60	107	42.5	15.8	42	669	2.59	
F48	6.91	37.0353	135.6625	2.1	15.0	81	60	215	28.2	14.1	28	397	2.14	
		36.5243	134.8006		15.0	81	60	264	21.1	14.5				
F49	7.39	36.5547	135.0374	2.4		47	60	145	36.3	14.5	87	1268	3.56	
		36.7748	135.3371			54	60	215	29.9	14.5				
F50	6.78	36.4860	136.0401	1.2	15.0	39	60	126	23.7	11.8	24	280	1.95	
F51	7.17	36.4332	136.0822	1.2	15.0	232	60	145	48.0	16.0	48	766	2.74	
		35.7951	136.0921	1.1		319	60	35	22.5	16.1		1133		
F52	7.34	35.9418	135.9285		15.0	27	60	125	25.4	16.1	70		3.34	
		36.1493	136.0572			344	60	40	22.5	16.1				
		35.4324	135.9466			291	90	35	17.2	14.0				
F53	7.21	35.4868	135.7681	1.0	15.0	310	90	35	11.4	14.0	60	840	2.86	
		35.5523	135.6705			319	90	35	31.3	14.0				
F54	7.19	35.5833	135.0833	1.1	15.0	332	90	35	57.6	13.9	58	799	2.80	
555	7 4 9	35.7569	134.4138	1.1	15.0	261	60	215	69.0	16.0	05	1510	2.06	
133	7.40	35.6530	133.6580	1.1	15.0	249	60	215	25.8	16.0	30	1318	3.90	
556	7 1 0	35.6189	132.9596	1.1	15.0	217	60	143	7.1	16.0	40	702	2 70	
130	7.19	35.5699	132.9171	1.1	15.0	268	60	215	42.4	16.0	43	793	2.75	
F57	7.51	35.4992	132.4222	1.2	15.0	271	60	215	72.4	16.0	102	1627	4 15	
137	7.31	35.5023	131.6174	1.2	13.0	235	60	145	30.1	16.0	102	1037	4.10	
F58	7.13	34.6586	131.5104	1.1	15.0	329	90	325	50.1	13.9	50	696	2.63	
F59	7.38	34.1000	131.0833	1.1	15.0	310	90	325	87.9	13.9	88	1225	3.49	
F60	7.59	33.3933	130.8816	1.0	15.0	321	90	325	136.9	14.0	137	1914	4.60	

表3.5 Mwの順位

(■:平均すべり量(σ式)6.0m、■:平均すべり量(σ式)5.0m以上)

Mw順位	津波断層 モデルNo.	Mw	平均 すべり量 (m)	断層面積 (km ²)	断層長さ (km)
1	F01	7.9	6.0	4,046	162
2	F24	7.9	6.0	3,717	132
3	F14	7.8	6.0	3,357	175
4	F15	7.8	6.0	3,353	177
5	F20	7.8	6.0	3,118	170
6	F30	7.8	6.0	2.951	153
7	F17	7.8	6.0	2,906	135
8	F19	7.8	6.0	2,773	101
9	F18	7.7	5.5	2.481	137
10	F34	7.7	5.5	2.439	124
11	F28	7.7	5.2	2.269	126
12	F02	7.7	5.2	2.266	118
13	F16	7.6	4.8	2 0 2 7	76
14	F09	7.6	4.8	2 0 2 1	72
15	F06	7.6	47	1 9 9 1	105
16	F41	7.6	47	1947	86
17	F60	7.6	4.6	1914	137
18	F35	7.6	4.6	1,906	99
19	F31	7.6	4.5	1.876	96
20	F43	7.6	4.5	1 852	94
21	F23	7.5	4.3	1 725	92
22	F33	7.5	4.2	1 680	89
23	F57	7.5	4.2	1 637	102
24	F11	7.5	4.0	1.520	78
25	F55	7.5	4.0	1518	95
26	F10	7.5	3.9	1 507	73
27	F38	7.5	3.9	1 4 7 4	63
28	F37	74	3.8	1 406	75
29	F21	74	3.8	1 392	78
30	F08	74	3.8	1 390	75
31	F26	74	37	1 374	71
32	F12	7.4	3.7	1.362	73
33	F07	7.4	3.7	1.357	76
34	F39	7.4	3.7	1.336	74
35	F49	7.4	3.6	1.268	87
36	F59	7.4	3.5	1.225	88
37	F52	7.3	3.3	1,133	70
38	F13	7.3	3.3	1,131	53
39	F22	7.3	3.3	1,119	64
40	F04	7.3	3.3	1.096	58
41	F32	7.3	3.2	1,076	57
42	F27	7.3	3.2	1,066	56
43	F36	7.3	3.2	1,049	55
44	F29	7.3	3.1	1,006	62
45	F25	7.3	3.1	998	49
46	F42	7.3	3.1	988	56
47	F05	7.3	3.1	972	54
48	F44	7.3	3.1	971	50
49	F03	7.2	2.9	868	45
50	F53	7.2	2.9	840	60
51	F40	7.2	2.8	803	42
52	F54	7.2	2.8	799	58
53	F56	7.2	2.8	793	49
54	F45	7.2	2.8	782	43
55	F51	7.2	2.7	766	48
56	F58	7.1	2.6	696	50
57	F47	7.1	2.6	669	42
58	F48	6.9	2.1	397	28
59	F46	6.9	2.0	339	26
60	F50	6.8	2.0	280	24

図 3.8 断層モデル設定案

4) 大すべり域の設定

津波の計算を行う断層モデルは、実地震のすべりの不均質性を考慮して、大すべり域を 設定したモデルとする。

・大すべり域:

- ① 大すべり域は、各セグメントの浅部側にひとつ配置する。
 - ・走向方向に配置位置を変えて3ケースを設定する(右側、中央、左側)
 - ・複数のセグメントがある場合は、大すべり域が隣接したケースを設定する

② 大すべり域は小断層からなる矩形とする。

- ③ 大すべり域の深さ方向の幅は断層幅の 50%程度とする。
- ④ 大すべり域の面積は断層全体の20%程度とする。
- ⑤ 大すべり域のすべり量は平均すべり量の2倍とする。
- ⑥ 背景領域(大すべり域ではない領域)のすべり量は、総モーメントが平均すべり 量モデルと同じとなるように設定する。

F34(1964年新潟地震相当)

F24 (1983 年日本海中部地震相当)

図 4.1 大すべり域の設定例

図 4.2 大すべり域の位置の基本ケース

大すべり隣接 LLRR

大すべり隣接 LRLR

図 4.3 大すべり域の位置の隣接ケース(4 セグメントの場合)

図5 平成15年時点の地震調査研究推進本部による想定地震の震源域 と今回の震源断層モデル 位置の比較