日本海における大規模地震に関する調査検討会 報告書

データ集② [断層パラメータの設定]

平成26年9月 日本海における大規模地震に関する調査検討会

1-1. 断層パラメータの設定

1) 設定断層モデルの概要

海底断層WGにおいて決定された断層範囲に基づいて、津波を計算するための津波断層モデルを設定した。設定した津波断層モデルは、表 1.1 に示す 60 断層モデルである。

表 1.1 設定した津波断層モデルの概要

領域	津波断層モデル	断層数							
日本海【東北~北海道】	F01~F41	41							
日本海【西日本】	F42~F60	19							
	合計								

規模別頻度分布

図 1.1 設定した断層モデルの 規模別積算頻度分布(上図) および規模別頻度分布(下図)

2) 断層の形状

津波断層をモデル化するにあたり、断層面を矩形断層で近似した。近似の方法は以下のとおりである。

・断層の海底面トレース:海底断層WGにおいて設定された各断層範囲について、海底断層WGにおいて認定した断層線の端点を結ぶ直線を断層面の海底面への延長(海底面トレース)とする。断層線の分布が直線状でない場合には、複数の線分に分割する。

・断層上端の深さ:各断層の海底面トレースの平均水深+1kmとする。

断層下端の深さ:地質構造区分を考慮して、以下のように設定する。

大陸地殻内 : 15km 日本海東縁リフト内 : 18km 日本海東縁リフト縁 : 15km 海洋地殻/大陸地殻境界 : 18km

海洋地殻/厚い海洋性地殻:18km(もしくは25km)

・走向: 断層海底面トレースの走向とする。

• 傾斜: 東傾斜および西傾斜の断層については、構造探査による反射面から、以下の 4 区分で傾斜角を設定する。

傾斜角の区分:30度、45度、60度、90度

- ・すべり角: 各断層位置における圧縮応力軸を断層面に投影した角度をすべり角とする。 圧縮応力場のデータは、Terakawa and Matsuura (2010)を用いた。
- ・断層幅: 断層上端と下端の深さから傾斜角を考慮して算出する。ただし、断層のアスペクト比(断層長さ/断層幅)が2.0未満とならないようにする。
- 断層長さ: 断層海底面トレースの長さとする。

図 2.1 断層モデル海底面トレースの設定例(断層 F18) 海底断層線(オレンジ線)の端点を結ぶように断層モデルの海底面への延長 (海底面トレース、黒線)を設定する

図 2.2 断層上端深さの設定例

津波の計算のため、断層運動による海底の地殻変動量を Okada (1992) により求めて、 津波の初期水位分布とした。 Okada (1992) では半無限弾性体における地殻変動量を求め るプログラムであり、3 次元的な地形での地殻変動量を求めることは出来ない。そのため、 各地点の地殻変動量を求める際には、設定した TP 基準の断層上端深さをそのまま計算に用いるのではなく、その地点の水深を基準とした断層上端深さを算出して地殻変動量の計算 に用いた。ただし、断層上端の深さが海底地形の水深よりも浅い地点では、断層上端深さ を 0km として地殻変動量を計算した。図 2.3 に海底面トレースが断層上端深さよりも浅い 場合を示す。

なお、初期水位を求める際には、Tanioka and Satake (1996)に従い、水辺成分の地殻変動の水位への影響を考慮した。

海底断層 F28

海底断層 F23

海底断層 F13

図 2.3 海底面トレースが断層上端深さを下回る場合(茶線:海底地形、青線:上端深さ)

図 2.4 断層モデル設定案

図 2.5 断層モデル設定案(北海道)

図 2.6 断層モデル設定案(北陸~東北)

図 2.7 断層モデル設定案(西日本)

3) 断層の平均すべり量

2-1) 断層すべり量の設定方法

平均すべり量:

断層の平均すべり量は、以下のスケーリング式に基づいて設定する。

1) 断層の面積が推定できる場合

断層面積に基づくスケーリング式

① µ式:平均的な地震規模を与える式

② σ式:危険側の地震規模を与える式

2) 断層の面積が推定できない場合

断層長さに基づくスケーリング式

1-1) 断層面積が推定できる場合【 μ 式】

断層面積Sと地震モーメント M_0 のスケーリング式に基づいて設定する。 平均的な地震規模を与える式であり、平均すべり量は4.5mで飽和とする。

[断層すべり量の算出手順]

① スケーリング 式で断層面積 $S(m^2)$ から $M_0(Nm)$ を算出する

$$M_0 = (S/2.23 \times 10^9)^{3/2} \times 10^{-7}$$
 $(M_w < 6.5)$ 入倉・三宅 $(2001)^{-1}$ $M_0 = (S/4.24 \times 10^5)^2 \times 10^{-7}$ $(6.5 \le M_w < 7.7^*)$ ※入倉・三宅 (2001) では、適用範囲を $6.5 \le M_w$ としている

 $M_0 = 1.54 \times S \times 10^{11} \tag{7.7 \le M_w}$

② 断層すべり量 D_u を算出する

$$M_0 = \mu D_\mu S \ , \ \mu = 3.43 \times 10^{10} \ Nm$$

$$log M_0 = 1.5 M_w + 9.1$$

図 3.1 本検討会のスケーリング式 (*μ* 式)

¹ 入倉孝次郎・三宅弘恵 (2001): シナリオ地震の強震動予測、地学雑誌、110、849-875.

1-2) 断層面積が推定できる場合【 σ 式】

危険側の地震規模を与える式として、平均すべり量を μ 式に対して 1.5m加算する。 平均すべり量は 6.0mで飽和とする。

[断層すべり量の算出手順]

① μ 式の平均すべり量に対して 1.5m加算する

$$D_{\sigma} = D_{\mu} + 1.5$$

② M₀、M_wを算出する

$$M_0 = \mu DS$$
 , $\mu = 3.43 \times 10^{10} Nm$

 $\log M_0 = 1.5 M_w + 9.1$

図 3.2 本検討会のスケーリング式 (₀式)

2) 断層面積が推定できない場合

地震マグニチュード M_W を断層長さLとの関係式から与える。 断層すべり量を、図 3.1 および図 3.2 の M_W と D の関係から与える。

[断層すべり量の算出手順]

① スケーリング 式で断層長さL (m)から M_w を算出する

$$\log L = 0.6M_i - 2.9$$
 (松田、1975)

$$M_w = M_i - 0.3$$
 (内閣府、2013)

 $\log M_0 = 1.5 M_w + 9.1$

② 図 3.1 および図 3.2 の M_w と D の関係から断層すべり量を算出する

σ 式 →図 3.2

図3.3 断層スケーリング式の比較

上段:松田(1975)および内閣府(2013)による断層長さとMwの関係式

下段:本検討会による断層面積とMwの関係式(μ 式、断層幅を最大 20km と仮定し

た場合)

参考1) 既往地震の平均すべり量について

日本海東縁部で発生した既往地震(1983年日本海中部地震および 1993年北海道南西沖地震)について、各研究者の断層パラメータを調べると、各モデルの平均すべり量の平均値は 4.5m程度である。また、+1 σ の平均すべり量は 6 m程度である。

図 3.4 日本海東縁部の既往断層モデルの平均すべり量

左: Mw と平均すべり量の関係、標準偏差の範囲をエラーバーで示した 右:1983年日本海中部地震と1993北海道南西沖地震の既往断層モデルの平均すべり量

	Mw		7.1	7.5	7.4	8.0	7.6	7.4	7.6	7.6	7.6	7.6	7.6	7.7	7.7	7.8	7.8	7.7	7.9	7.8	7.8		7.7		に計算した
	合計Mo**	(NN)	5.2E+19	1.9E+20	1.9E+20	1.3E+21	3.2E+20	1.8E+20	2.7E+20	2.9E+20	2.7E+20	3.4E+20	3.3E+20	5.0E+20	5.0E+20	5.5E+20	7.4E+20	4.1E+20	7.6E+20	6.3E+20	7.2E+20		4.8E+20		※剛性率は μ =3.4×10 10 として計算した
	平均 すべり量	(m)	3.50	4.50	3.50	7.95	1.10	1.50	4.00	4.75	3.30	3.64	3.66	4.87	3.50	4.61	4.50	2.00	6.07	4.60	6.24		3.12		率は μ=3
	合計面積	(km²)	434	1250	1568	4800	8500	3500	2000	1760	2400	2680	2650	3000	4200	3450	4800	0009	3675	4000	3358		4440		五三※
	合計長さ	(km)	31	20	26	120	170	100	100	88	80	100	80	100	120	06	120	150	105	100	147		139		
	すべり量	(m)	3.50	4.50	3.50	7.95	1.10	1.50	4.00	4.75	3.30	3.30	3.00	7.60	3.50	6.00	5.00	2.00	6.80 4.60 6.80	4.00 5.00 5.00	5.71 4.00 12.00	2.26	0.52 6.07	3.10	
表 3.1	₽ 既	(wy) 往	14世	遍 25	Alii 28	9 年 D津	20	35	20	20	30	30	30 35	30	30	35	40	40	35 35 35	40 40 40	25 25 15	40	90 80	30	
波	黝層	(k m)	7.8	50-	2 9_	50 70	170	100	100	88	80	80 20	30	40	09	30	09	150	35 35 35	40 30 30	90 26 31	27	25 25	27	
	すべり角	()	06	06	06	90	90	06	90	88	90	06	90	06	06	120 90	06	115	06 06	06 06	80 105 105	06	06	06	
	傾斜	(度)	45	45	09	09	46	40	70	59	56	34	09	40	20	20 20	30	30	20 20 20	25 25 25	35 60 60	30	e e	09	
	走向	(度)	334	25	22	190 220	0	347	200	190	189	တတ	189	22 355	13	15	20 340	21	15 15 345	345 20 20	188 175 150	340	200 200	160	
	黙	(km)	1.0	1.0	1.0	2.0	ı	0.0	0.0	0.0	0.0	0.1 0.4	1 1	2.0	0.0	0.0	0. U	1	0.0	0.0	10.0 5.0 5.0	0.0	0.0	0.0	
	経度	(度)	139.83	139.89	139.63	139.76	139.03	139.53	139.49	139.38	139.42	139.00	139.23	138.84	138.80	138.87	138.80	138.70	138.86 138.97 139.06	139.09 139.03 138.91	139.40 139.24 139.21	139.089	139.4 / 0 139.363	139.173	
	緯度	(度)	40.47	40.70	38.95	39.39	42.82	43.73	38.78	38.69	38.74	38.06 38.37	38.32 38.74	40.21	40.20	40.37	40.21	40.10	40.27 40.58 40.84	40.79 40.65 40.39	43.14 42.35 42.14	42.943	42.882	42.480	
	文 本		樋渡ほか(2002)	樋渡ほか(2002)	樋渡ほか(2002)	相田(1989)	Fukao&Furumoto(1975)	佐竹(1986)	Aki (1966)	Hirasawa (1965)	Abe (1975)	Satake & Abe (1983)	松橋ほか(1987)	相田(1984)	多田(1984)	田中ほか(1984)	Satake (1985)	kanamori & Astiz (1985)	Sato (1985)	小菅ほか(1986)	高橋ほか(1995)		谷岡ほか(1995)		
	地震名		1704年岩館地震	1793年鯵ケ沢地震	1804年象潟地震	1833年庄内沖地震	1010年本野田子県	1940年作敗岬地馬				1964年新潟地震		1983年日本海中部地震1993年北海道南西沖地震											

参考2) 既往のスケーリング式

表 3.1 に示す既往研究のスケーリング式1~6を既往地震のデータと比較した。

式1:松田(1975)および武村(1990)

式2:松田(1975)および内閣府(2013)

式3:武村(1998) 式4:大竹(2002)

式5:入倉・三宅 (2001) および Murotani et al. (2010)

式6:入倉・三宅(2001) および島田ほか(2013)

式 $1\sim4$ は、断層長さLと地震モーメント M_0 の関係式である。これらの式を既往地震のパラメータと比較する際には、断層面積およびすべり量を以下のように与えた。

・断層面積S : $S = L \times W$ 、 $W = 1/2 \times L$ (ただし、 $W_{max} = 25km$)

・断層すべり量 D : $M_0 = \mu DS$ 、 $\log M_0 = 1.5 M_w + 9.1$

式 5 および 6 は断層面積と地震モーメント M_0 の関係式である。これらの式を既往地震のパラメータと比較する際には、断層長さおよびすべり量を以下のように与えた。

・断層長さL : L = S/W、 $W = 1/2 \times L$ (ただし、 $W_{max} = 25km$)

・断層すべり量 D : $M_0 = \mu DS$ 、 $\log M_0 = 1.5 M_w + 9.1$

表 3.2(1) 既往のスケーリング式

式	断層すべり量の設定方法
	① 松田(1975)式で断層長さ L から M_j を算出
	$\log L = 0.6M_j - 2.9$
式1	② 武村(1990) 2 式で M_j から M_w を算出
八 1	$M_w = 0.78M_j + 1.08$
	③ 断層面積 S を算出($S = L \times W$ 、 $W = 1/2 \times L$ (ただし、 $W_{max} = 25km$))
	断層すべり量 D を算出($M_0 = \mu DS$ 、 $\log M_0 = 1.5 M_w + 9.1$)
	① 松田(1975)式で断層長さ L から M_j を算出
	$\log L = 0.6M_j - 2.9$
式2	② 内閣府(2013)式で M_j から M_w を算出
1人2	$M_w = M_j - 0.3$
	③ 断層面積 S を算出($S = L \times W$ 、 $W = 1/2 \times L$ (ただし、 $W_{max} = 25km$))
	断層すべり量 D を算出($M_0=\mu DS$ 、 $\log M_0=1.5M_w+9.1$)

-

² 武村雅之 (1990): 日本列島およびその周辺地域に起こる浅発地震のマグニチュードと地 震モーメントの関係、地震 2、43、257-265.

表 3.2(2) 既往のスケーリング式

式	断層すべり量の設定方法
	① 武村(1998) 3 式で断層長さ $\it L$ から $\it M_{ m w}$ を算出
	$\log L = 0.5M_w - 1.91 \qquad (M_w < 6.8)$
	$\log L = 0.75M_w - 3.77 \qquad (6.8 \le M_w)$
式3	
	両式が滑らかに接続されるように、 $L=13$ kmで両式を使い分けた
	② 断層面積 S を算出($S = L \times W$ 、 $W = 1/2 \times L$ (ただし、 $W_{max} = 25km$))
	断層すべり量 D を算出($M_0=\mu DS$ 、 $\log M_0=1.5M_w+9.1$)
	① 大竹(2002) 4 式で断層長さ L から $M_{ m w}$ を算出
式4	$\log L = 0.67 M_w - 3.07$
14	② 断層面積 S を算出($S = L \times W$ 、 $W = 1/2 \times L$ (ただし、 $W_{max} = 25km$))
	断層すべり量 D を算出 $(M_0 = \mu DS \setminus \log M_0 = 1.5 M_w + 9.1)$
	①入倉・三宅 (2001) および Murotani et al. (2010)のスケーリング 式で断層
	面積 S (m^2)から M_0 (Nm)を算出する
	$M_0 = (S/2.23 \times 10^9)^{3/2} \times 10^{-7}$ $(M_w < 6.5)$ 入倉・三宅 (2001)
式5	$M_0 = (S/4.24 \times 10^5)^2 \times 10^{-7} $ $(6.5 \le M_w < 7.4)$
	$M_0 = 1.0 \times S \times 10^{11} \qquad (7.4 \le M_w)$
	② 断層すべり量 D を算出 $(M_0 = \mu DS)$
	断層長さ L を算出($L=S/W$ 、 $W=1/2\times L$ (ただし、 $W_{max}=25km$))
	①入倉・三宅(2001)および田島ほか(2013)のスケーリング 式で断層面積 S (m^2)
	から <i>M</i> ₀ (Nm)を算出する
	$M_0 = (S/2.23 \times 10^9)^{3/2} \times 10^{-7}$ $(M_w < 6.5)$ 入倉・三宅 (2001)
式6	$M_0 = (S/4.24 \times 10^5)^2 \times 10^{-7} $ $(6.5 \le M_w < 7.5)$
	$M_0 = 0.877 \times S \times 10^{11} \qquad (7.5 \le M_w)$
	② 断層すべり量 D を算出 $(M_0 = \mu DS)$
	断層長さ L を算出($L=S/W$ 、 $W=1/2 \times L$ (ただし、 $W_{max}=25km$))

³ 武村雅之 (1998):日本列島における地殻内地震のスケーリング則 -地震断層の影響および地震被害との関連、地震 2 、51 、211-228 .

⁴ 大竹政和 (2002):日本海東縁の地震発生ポテンシャル,大竹政和・太田陽子・平 朝彦編,『日本海東縁の活断層と地震テクトニクス』、東京大学出版会、175-185.

図3.5 スケーリング式と既往地震データの比較(横ずれ・縦ずれ両地震)

図3.6 スケーリング式と既往地震データの比較(縦ずれ地震のみ)

図 3.7 Murotani et al. (2010) および田島ほか (2013) のスケーリング式

2-2) 設定した断層モデル

本検討会のスケーリング式 (μ 式) によって設定した断層モデルのパラメータを表 3.3~ 3.4 に示す。

表 3.3 矩形断層モデルの断層パラメータ【北海道および東日本】

(■:平均すべり量(σ式)6.0m、■:平均すべり量(σ式)5.0m以上)

津波断層 モデル No.	Mw	緯度	経度	上端深さ	下端深さ	走向	傾斜	すべり角	断層長さ	断層幅	合計 断層長さ	合計 断層面積	平均すべり量
140.		(JGD2000)	(JGD2000)	(km, TP-)	(km, TP-)	(度)	(度)	(度)	(km)	(km)	(km)	(km²)	(m)
		44.8177	141.7569			340	45	78	46.5	7.0			
		45.2075 45.6343	141.5506 141.4535	1.1	6.0	351 342	45 45	84 79	47.9 67.6	7.0 7.0			
F01	7.88	44.8329	141.4535			342	30	84	46.5	18.0	162	4046	6.00
		45.2144	141.6126	6.0	15.0	351	30	88	47.9	18.0			
		45.6480	141.5137			342	30	84	67.6	18.0			
		45.1870	140.9505			355	45	82	53.7	19.3			
F02	7.67	45.6630	140.8859	1.4	15.0	23	45	100	36.3	19.3	118	2266	5.18
F03	7.23	45.9643 44.7424	141.0736 140.5945	1.2	15.0	7 19	45 45	89 105	27.6 44.6	19.3 19.5	45	868	2.91
F04	7.33	44.7263	139.6710	1.7	15.0	34	45	138	58.4	18.8	58	1096	3.28
F05	7.27	44.5380	139.3913	2.2	15.0	7	45	79	53.5	18.2	54	972	3.08
F06	7.61	44.3185	140.7304	1.5	15.0	217	45	82	42.0	19.1	105	1991	4.73
		44.0135	140.4097			191	45	79	62.5	19.1			
F07	7.42	44.5843 44.3286	139.5556 139.5818	2.4	15.0	176 201	45 45	54 76	29.0 21.6	17.9 17.9	76	1357	3.70
107	7.42	44.3280	139.4856	2.4	13.0	167	45	48	25.3	17.9	/0	1337	3.70
		44.1467	140.1912			218	45	93	31.3	18.4			
F08	7.44	43.9197	139.9500	2.0	15.0	189	45	77	20.9	18.4	75	1390	3.75
		43.7285	139.9106			153	45	63	23.1	18.4			
F00	7.61	43.6888	139.1853	4.0	100	347	30	103	24.4	27.9	70	0001	4.70
F09	7.61	43.8979 44.1640	139.1166 139.1298	4.0	18.0	2 347	30 30	104 103	29.2 18.8	27.9 27.9	72	2021	4.78
F10	7.47	43.6878	139.6577	3.4	18.0	194	45	98	73.2	20.6	73	1507	3.94
F11	7.48	43.9732	139.3373	4.2	18.0	180	45	67	78.1	19.5	78	1520	3.97
		43.4047	139.8615			156	45	62	24.0	18.7			
F12	7.43	43.2076	139.9794	1.8	15.0	161	45	65	29.3	18.7	73	1362	3.71
		42.9607	140.0946		400	177	45	79	19.7	18.7		4404	
F13	7.34	42.6991 43.4326	139.4869 139.5697	3.0	18.0	172 195	45 45	70 99	53.4 43.3	21.2	53	1131	3.33
F14	7.83	43.0566	139.4315	3.6	18.0	192	45	111	79.6	20.3	175	3357	6.00
		42.3542	139.2327	3.6		167	60	105	51.9	16.6			
		43.4568	139.3648	3.8		173	45	97	45.2	20.1			
F15	7.83	43.0566	139.4315	3.8	18.0	192	45	111	79.6	20.1	177	3353	6.00
F16	7.04	42.3542	139.2327	3.8	100	167	60	105	51.9	16.4	7.0	0007	4.70
	7.61	41.7417	138.6545 139.4058	4.6	18.0	14 10	30 45	94 106	75.9 53.9	26.7 21.5	76	2027	4.79
F17	7.78	41.4998	139.5198	2.8	18.0	350	45	96	81.0	21.5	135	2906	6.00
F18	7.71	40.8886	139.7757	2.2	15.0	7	45	95	100.0	18.1	137	2481	5.52
110	7.71	41.7824	139.9293	2.2	13.0	348	45	87	37.4	18.1	137	2401	3.32
F19	7.77	40.8783	138.1776	4.3	18.0	33	30	110	58.6	27.3	101	2773	6.00
		41.3225 41.4831	138.5646 139.5716	2.0		18 151	30 45	97 68	42.8 30.8	27.3 18.4			
		41.2482	139.7485	2.0		199	45	102	47.2	18.4			
F20	7.80	40.8430	139.5615	2.0	15.0	165	45	103	52.4	18.4	170	3118	6.00
		40.3887	139.7171	2.0		175	45	88	39.2	18.4			
F21	7.44	41.4831	139.5716	2.4	15.0	151	45	68	30.8	17.9	78	1392	3.76
F22		41.2482 40.9131	139.7485			199	45 45	102 98	47.2 63.9	17.9 17.5	64		
	7.34	40.8430	139.5750 139.5615	2.6	15.0	165	45	103	52.4	18.8		1119	3.31
F23	7.54	40.3887	139,7171	1.7	15.0	175	45	88	39.2	18.8	92	1725	4.30
F24	7.86	40.1054	138.9259	3.9	18.0	21	30	74	53.7	28.2	132	3717	6.00
		40.5641	139.1542			349	30	80	77.9	28.2			
F25	7.29	40.2604	138.7649	3.7	18.0	205	45	116	49.5	20.2	49	998	3.12
F26 F27	7.43 7.31	39.9742 39.6464	139.5708 138.9724	1.3 1.6	15.0 15.0	184 184	45 45	85 82	70.9 56.3	19.4 18.9	71 56	1374 1066	3.73 3.23
121	7.31	40.0114	138.8859	1.0	10.0	200	45	115	35.7	18.0	50	1000	0.20
F28	7.67	39.7079	138.7422	2.3	15.0	185	45	93	39.7	18.0	126	2269	5.18
		39.3551	138.7060			202	45	118	50.9	18.0			
F29	7.29	39.4819	138.3429	3.5	15.0	25	45	100	61.6	16.3	62	1006	3.13
F30	7.79	39.8052	139.8661	1.3	15.0	202	45	98	96.1	19.3	153	2951	6.00
F31	7.58	39.0100 39.8052	139.4516 139.8661	1.2	15.0	247 202	45 45	120 98	56.5 96.1	19.3 19.5	96	1876	4.54
F32	7.32	39.0100	139.4516	1.5	15.0	247	45	120	56.5	19.0	57	1076	3.24
F33	7.52	39.2937	139.3574	1.7	15.0	234	45	123	89.1	18.8	89	1680	4.22
F34	7.71	39.0485	139.7337	1.1	15.0	211	45	106	71.9	19.7	124	2439	5.45
		38.4894	139.3120			197	45	97	52.0	19.7			
F35	7.58	38.9890	138.8728	1.4	15.0	200	45	96	99.1	19.2	99	1906	4.59
F36	7.31	38.3432 38.6196	138.2586	1.5	15.0	36	45 45	46 97	31.3	19.1	55	1049	3.20
		38.6196	138.2837 138.4683			36 227	45 45	97 130	23.6 33.9	19.1 18.8			
F37	7.44	38.6578	138.1766	1.7	15.0	185	45	90	41.0	18.8	75	1406	3.78
F38	7.46	38.2341	138.7683	1.3	18.0	209	45	95	62.6	23.6	63	1474	3.89
F39	7.42	37.7431	138.1239	2.3	15.0	350	45	67	37.3	18.0	74	1336	3.67
1 39	1.42	38.0658	138.0489	۷.۵	10.0	38	45	73	36.9	18.0	/4	1000	3.07
F40	7.19	37.4338	138.2858	1.6	15.0	26	45	84	14.7	18.9	42	803	2.80
	1	37.5605	138.3581			338	45	66	27.7	18.9			
F41	7.60	36.9922	137.5859	1.9	18.0	37	45	76	51.5	22.7	86	1947	4.66

表 3.4 矩形断層モデルの断層パラメータ【西日本】

(■:平均すべり量 (σ式) 6.0m、■:平均すべり量 (σ式) 5.0m以上)

津波断層 モデル No.	Mw	緯度	経度	上端深さ	下端深さ	走向	傾斜	すべり角	断層長さ	断層幅	合計 断層長さ	合計 断層面積	平均 すべり量
110.		(JGD2000)	(JGD2000)	(km, TP-)	(km, TP-)	(度)	(度)	(度)	(km)	(km)	(km)	(km²)	(m)
F42	7.28	38.0095	137.8939	2.5	15.0	201	45	78	37.7	17.7	56	988	3.10
F42	7.20	37.6983	137.7436	2.5	13.0	241	45	112	18.1	17.7	56	900	3.10
F43	7.57	37.3274	136.6811	1.1	15.0	64	45	113	48.3	19.7	94	1852	4.50
F43	7.57	37.5179	137.1753	1.1	13.0	55	45	105	45.9	19.7	94	1002	4.50
F44	7.27	37.9886	137.2724	1.2	15.0	230	45	99	36.0	19.6	50	971	3.08
Г44	1.21	37.7836	136.9640	1.2	13.0	267	45	145	13.7	19.6	50	971	3.06
F45	7.18	37.2339	137.3179	2.0	15.0	228	45	103	16.2	18.3	43	782	2.77
F40	7.18	37.1319	137.1774	2.0	15.0	191	45	62	26.4	18.3	43	782	2.11
F46	6.85	37.0610	136.5533	1.1	15.0	177	60	42	26.0	13.0	26	339	2.05
F47	7.12	36.7282	136.0648	1.4	15.0	30	60	107	42.5	15.8	42	669	2.59
F48	6.91	37.0353	135.6625	2.1	15.0	81	60	215	28.2	14.1	28	397	2.14
		36.5243	134.8006	2.4	15.0	81	60	264	21.1	14.5	87		
F49	7.39	36.5547	135.0374			47	60	145	36.3	14.5		1268	3.56
		36.7748	135.3371			54	60	215	29.9	14.5			
F50	6.78	36.4860	136.0401	1.2	15.0	39	60	126	23.7	11.8	24	280	1.95
F51	7.17	36.4332	136.0822	1.2	15.0	232	60	145	48.0	16.0	48	766	2.74
		35.7951	136.0921			319	60	35	22.5	16.1			
F52	7.34	35.9418	135.9285	1.1	15.0	27	60	125	25.4	16.1	70	1133	3.34
		36.1493	136.0572			344	60	40	22.5	16.1			
		35.4324	135.9466			291	90	35	17.2	14.0			
F53	7.21	35.4868	135.7681	1.0	15.0	310	90	35	11.4	14.0	60	840	2.86
		35.5523	135.6705			319	90	35	31.3	14.0			
F54	7.19	35.5833	135.0833	1.1	15.0	332	90	35	57.6	13.9	58	799	2.80
F55	7.48	35.7569	134.4138	1.1	15.0	261	60	215	69.0	16.0	95	1518	3.96
Foo	7.40	35.6530	133.6580	1.1	13.0	249	60	215	25.8	16.0	95	1010	3.90
F56	7.19	35.6189	132.9596	1.1	15.0	217	60	143	7.1	16.0	49	793	2.79
F30	7.19	35.5699	132.9171	1.1	13.0	268	60	215	42.4	16.0		793	2.79
F57	7.51	35.4992	132.4222	1.2	15.0	271	60	215	72.4	16.0	102	1637	4.15
1-37	7.31	35.5023	131.6174	1.2	13.0	235	60	145	30.1	16.0	102	1037	4.15
F58	7.13	34.6586	131.5104	1.1	15.0	329	90	325	50.1	13.9	50	696	2.63
F59	7.38	34.1000	131.0833	1.1	15.0	310	90	325	87.9	13.9	88	1225	3.49
F60	7.59	33.3933	130.8816	1.0	15.0	321	90	325	136.9	14.0	137	1914	4.60

表 3.5 Mwの順位
(■:平均すべり量 (σ式) 6.0m、■:平均すべり量 (σ式) 5.0m以上)

Mw順位	津波断層 モデルNo.	Mw	平均 すべり量 (m)	断層面積 (km²)	断層長さ (km)
1	F01	7.9	6.0	4,046	162
2	F24	7.9	6.0	3,717	132
3	F14	7.8	6.0	3,357	175
4	F15	7.8	6.0	3,353	177
5	F20	7.8	6.0	3,118	170
6	F30	7.8	6.0	2,951	153
7	F17	7.8	6.0	2,906	135
8	F19	7.8	6.0	2,773	101
9	F18	7.7	5.5	2,481	137
10	F34	7.7	5.5	2,439	124
11	F28	7.7	5.2	2,269	126
12	F02	7.7	5.2	2,266	118
13 14	F16	7.6	4.8	2,027	76
15	F09 F06	7.6 7.6	4.8 4.7	2,021 1,991	72 105
16	F41	7.6	4.7	1,991	86
17	F60	7.6	4.6	1,947	137
18	F35	7.6	4.6	1,906	99
19	F31	7.6	4.5	1,876	96
20	F43	7.6	4.5	1,852	94
21	F23	7.5	4.3	1,725	92
22	F33	7.5	4.2	1,680	89
23	F57	7.5	4.2	1,637	102
24	F11	7.5	4.0	1,520	78
25	F55	7.5	4.0	1,518	95
26	F10	7.5	3.9	1,507	73
27	F38	7.5	3.9	1,474	63
28	F37	7.4	3.8	1,406	75
29	F21	7.4	3.8	1,392	78
30	F08	7.4	3.8	1,390	75
31	F26	7.4	3.7	1,374	71
32	F12	7.4 7.4	3.7	1,362	73
33 34	F07 F39	7.4	3.7 3.7	1,357 1,336	76 74
35	F49	7.4	3.6	1,268	87
36	F59	7.4	3.5	1,225	88
37	F52	7.3	3.3	1,133	70
38	F13	7.3	3.3	1.131	53
39	F22	7.3	3.3	1,119	64
40	F04	7.3	3.3	1,096	58
41	F32	7.3	3.2	1,076	57
42	F27	7.3	3.2	1,066	56
43	F36	7.3	3.2	1,049	55
44	F29	7.3	3.1	1,006	62
45	F25	7.3	3.1	998	49
46	F42	7.3	3.1	988	56 54
47	F05	7.3	3.1	972 971	54 50
48 49	F44 F03	7.3 7.2	3.1 2.9	868	50 45
50	F53	7.2	2.9	840	60
51	F40	7.2	2.8	803	42
52	F54	7.2	2.8	799	58
53	F56	7.2	2.8	793	49
54	F45	7.2	2.8	782	43
55	F51	7.2	2.7	766	48
56	F58	7.1	2.6	696	50
57	F47	7.1	2.6	669	42
58	F48	6.9	2.1	397	28
59	F46	6.9	2.0	339	26
60	F50	6.8	2.0	280	24

図3.8 断層モデル設定案

4) 大すべり域の設定

津波の計算を行う断層モデルは、実地震のすべりの不均質性を考慮して、大すべり域を 設定したモデルとする。

・大すべり域:

- ① 大すべり域は、各セグメントの浅部側にひとつ配置する。
 - ・走向方向に配置位置を変えて3ケースを設定する(右側、中央、左側)
 - ・複数のセグメントがある場合は、大すべり域が隣接したケースを設定する
- ② 大すべり域は小断層からなる矩形とする。
- ③ 大すべり域の深さ方向の幅は断層幅の50%程度とする。
- ④ 大すべり域の面積は断層全体の20%程度とする。
- ⑤ 大すべり域のすべり量は平均すべり量の2倍とする。
- ⑥ 背景領域(大すべり域ではない領域)のすべり量は、総モーメントが平均すべり量モデルと同じとなるように設定する。

F34 (1964 年新潟地震相当)

F24 (1983 年日本海中部地震相当)

図 4.1 大すべり域の設定例

図 4.3 大すべり域の位置の隣接ケース(4 セグメントの場合)

図 5 平成 1 5 年時点の地震調査研究推進本部による想定地震の震源域 と今回の震源断層モデル 位置の比較