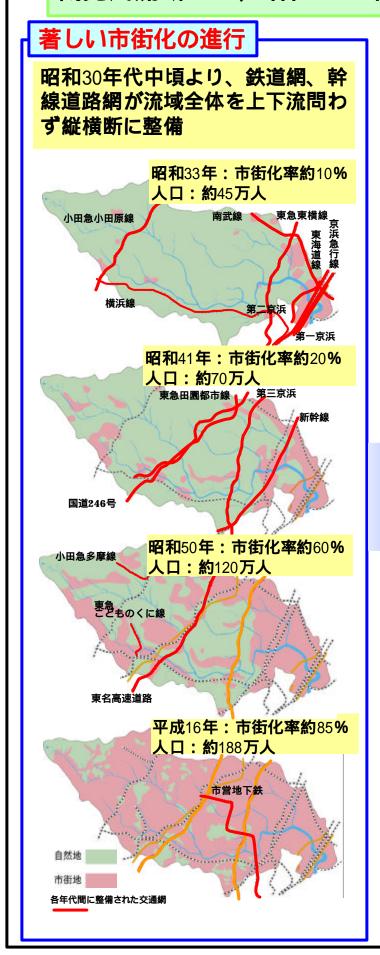
2

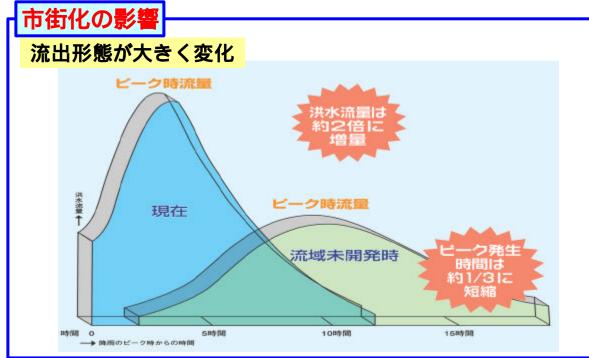
鶴見川水系の特徴と課題

浸水被害の頻発に対する流域一体となった総合治水対策

- ・昭和30年代からの流域の著しい市街化により保水・遊水機能 が低下し、浸水被害が頻発
- ・流域が一体となった総合治水対策を全国に先駆けて実施
- ・総合治水対策の進捗により浸水被害は減少傾向
- ・防災調整池の埋め立てなど諸課題が顕在化
- ・特定都市河川浸水被害対策法の適用により浸水被害対策を強化

水環境改善の取り組み


- ・汚濁負荷の増加、地下水流出量の減少により、水質が悪化した が、下水道普及等によりある程度まで改善
- ・河川流量に占める下水道処理水の割合が高い
- ・下水道管理者等と連携した水質改善


流域における自然環境の保全と活発な市民活動

- ・流域に残された貴重な自然環境の保全
- ・クリーンアップ活動や環境学習など流域での活発な市民活動

特徴と課題(鶴見川流域の特徴)

鶴見川流域では、昭和30年代中頃からの流域の急速かつ過密な市街化により保水・遊水機能が急減し、浸水被害が頻発。

主な洪水と治水対策 S14 **直轄事業に着手、改修計画策定** 計画高水流量 650m³/s

| **洪水 台風22号、戦後最大)** | 流域平均2日雨量 343mm | 末吉橋ピーク流量 510m³/s | 浸水戸数 20,000戸以上

X(台風 4号)流域平均2日雨量 307mm末吉橋ピーク流量 500m³/s浸水戸数 約19,000戸

S42 | **一級水系に指定**

S43 工事実施基本計画策定 計画高水流量 900m³/s

S49 **工事実施基本計画改定** 基本高水のピーク流量 2,300m³/s 計画高水流量 1,800m³/s

| **洪水 (台風 17号)** | 流域平均2日雨量 160mm | 末吉橋ピーク流量 690m³/s | 浸水戸数 約3,900戸

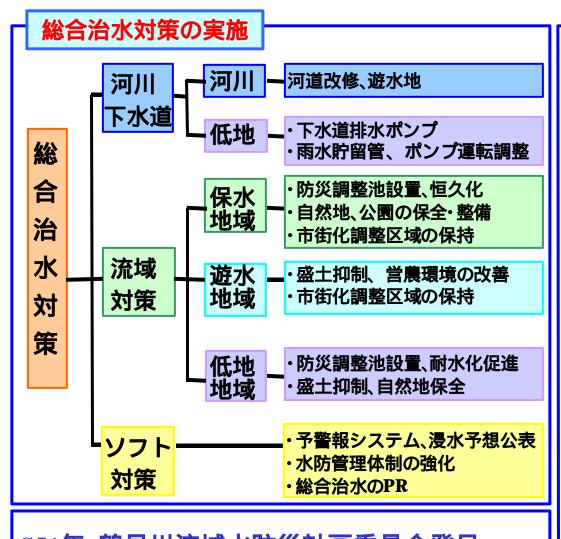
S54 総合治水対策特定河川に指定

S56 鶴見川流域整備計画策定

| **洪水 台風 17号)** | 流域平均2日雨量 218mm | 末吉橋ピーク流量 1,050m³/s | 浸水戸数 約2,700戸

H 1 | **鶴見川新流域整備計画策定**

H6


H3.9 洪水 (台風 17号) 流域平均2日雨量 287mm 末吉橋ピーク流量 1,020m³/s 浸水戸数 約60戸

> 工事実施基本計画改定 基本高水のピーク流量 2,600m³/s 計画高水流量 1,800m³/s

H15.6 | 鶴見川多目的遊水地完成 (S60着手)

H16.10 洪水 (台風22号) 流域平均2日雨量 294mm 末吉橋ピーク流量 1,070m³/s 浸水戸数 約190戸

流域が一体となった総合治水対策を全国に先駆けて実施。対策の進捗により浸水被害は軽減。

S51年 :鶴見川流域水防災計画委員会発足 メンバー:学識者、流域自治体、河川管理者

S54年 総合治水対策特定河川指定

S55年:鶴見川流域総合治水対策協議会発足

メンバー:流域自治体、河川管理者

S56年 :鶴見川流域整備計画策定

想定市街化率 :75%、 末吉橋地点 :1,150m³/s

H1年 :鶴見川流域新流域整備計画策定

想定市街化率 25% 末吉橋地点 :1,300m³/s

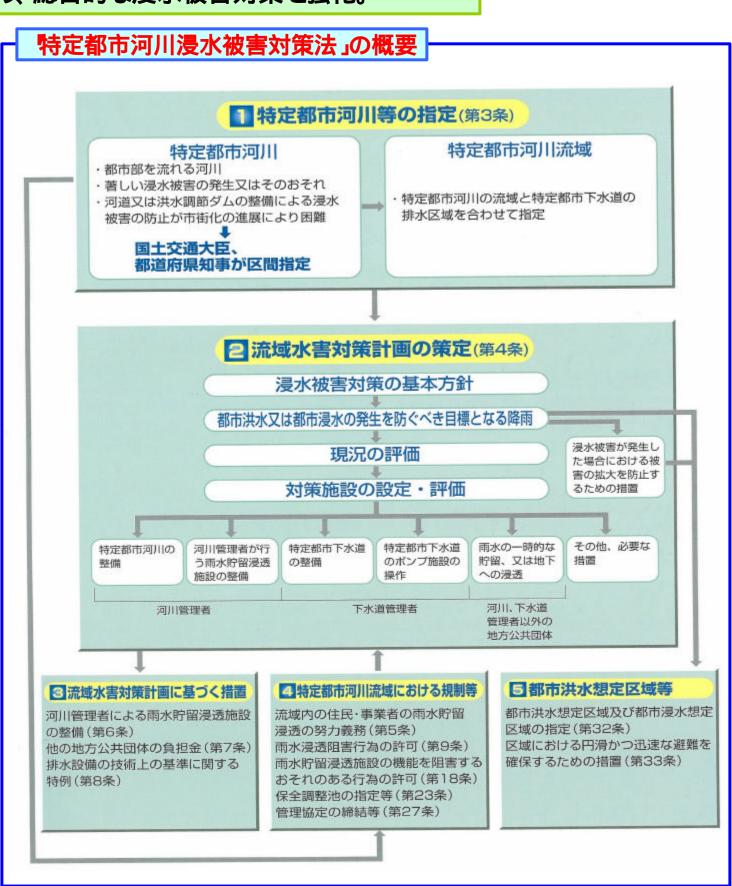
総合治水対策の進捗状況 3000 ■基数 2500 200 150 150 · 貯水量 基 2000 1500 100 1000 500 S55 S55 S60 H2 H12 H15 防災調整池設置経年変化図 ケ丘調整池 方災調整池) <緑地保全に係る条例の制定>| 町田市 S58制定、H12改定 横浜市 S48制定、H16改定 川崎市 H11制定

特徴と課題(総合治水対策をとりまく諸課題への対応)

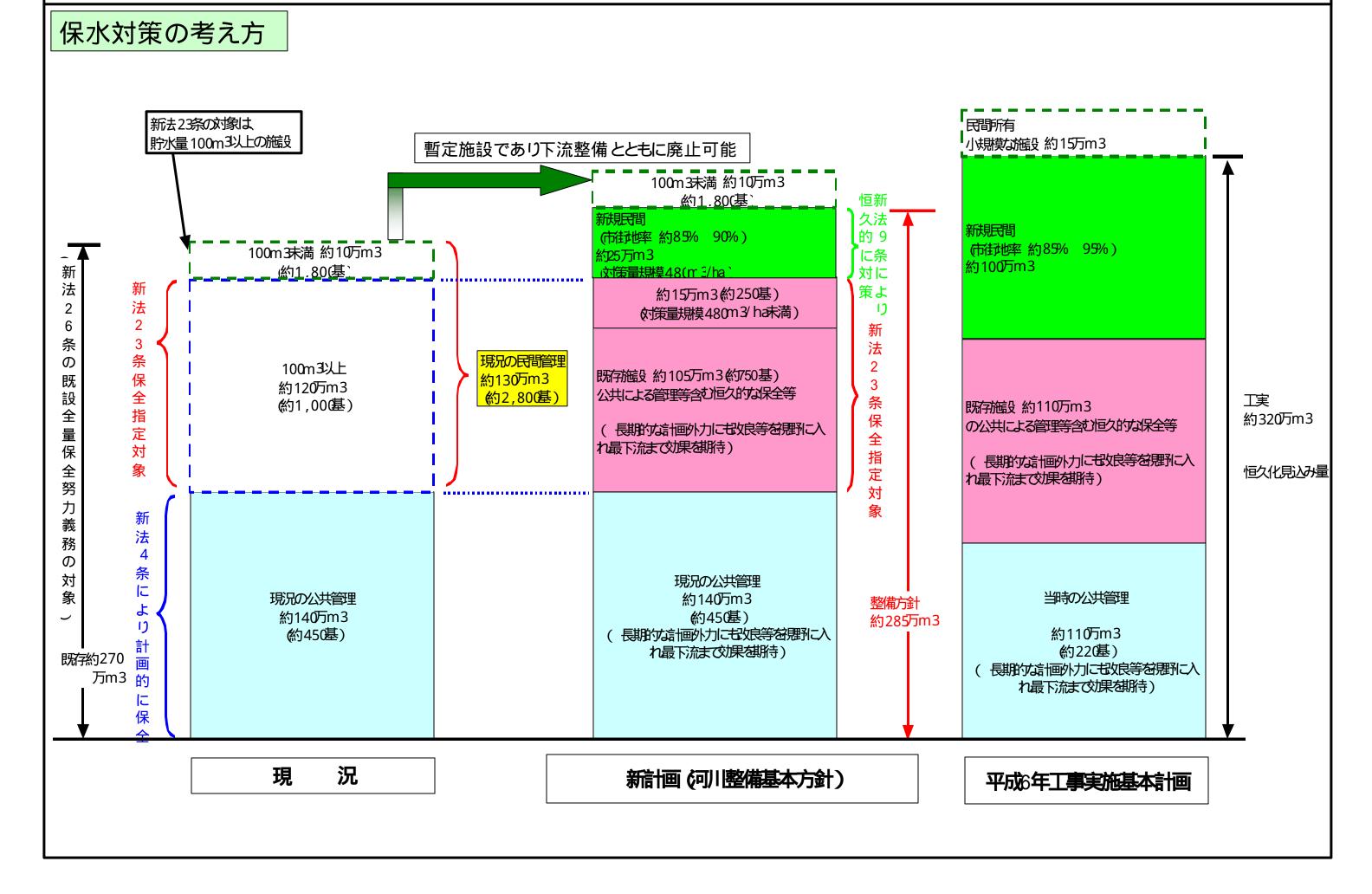
防災調整池の埋め立ての発生などの諸課題が顕在化。 特定都市河川浸水被害対策法』の適用により、総合的な浸水被害対策を強化。

総合治水対策を取り巻く諸課題の顕在化

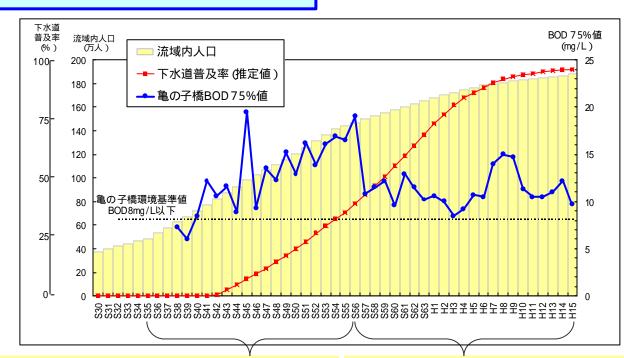
流域からの流出を抑制する防災調整池 (民間管理)に埋め立てが発生



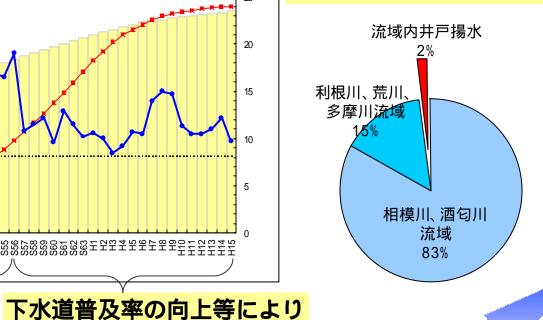
鶴見川以外の流域では、流域対策の実施が十分ではない


特定都市河川浸水被害対策法の適用へ

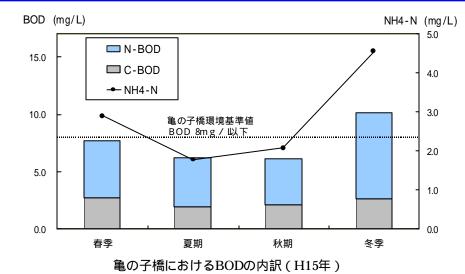
防災調整池の保全指定(埋め立て等の届け出義務による機能維持) 河川管理者、下水道管理者、地方公共団体の長が共同して、流域 水害対策計画を法定計画として策定し、総合的な浸水被害対策を 計画的に推進



鶴見川水系



水質は中流部の一部区間で環境基準を満足しておらず、今後の水質改善には関係者で連携した取り組みが必要。


流域の市街化と水質の変遷

都市用水の水源は、98%を他流域に依存

B O D値は下水道処理水中のアンモニア性窒素 等に起因するN-BODの割合が大きい

全BOD = C-BOD + N-BOD

C-BOD:河川水中の有機物に起因するBOD

N-BOD:河川水中のアンモニア性窒素(NH4-N)等の無機物に起因するBOD

亀の子橋地点では環境基準値を超過

人口や市街地の増加により汚濁 負荷が増加。水質の悪化が進行。

河川流量に占める下水道処理水量の割合が増加

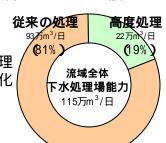
地下水流出量が減少す る一方で、下水道処理 水量が増大 1.0 2 0.2 1.2 1.6 1.3 1.2 1.0 昭和20年代 昭和40年 昭和60年 (約73%) (約90%) (約7.5%) (約20%) (約85%) □ 地下水流出量 □下水処理水量 ()内は市街化率

「亀の子橋」における流量内訳の変遷

水質はある程度まで改善。

上記グラフは、シミュレーション結果をもとに作成。

流域の関係者が連携した水質改善が必要


河川管理者、下水道管理者などが連携し対策を推進

地下水の保全涵養や湧水の復活

- ・浸透機能を持つ緑地の保全
- ・雨水浸透桝、雨水浸透トレンチの設置

浸透桝、浸透トレンチの設置

現在の下水処理 場の高度処理化 状況

下水の水質改善

- ・家庭や市街地からの汚濁負荷量の削減
- ・下水道の高度処理化によるBOD値の 更なる低減

流域に残された自然環境

中流域でみられる農地

中流域にみられるオギ・ ヨシ群落

コアジサシ

ホトケドジョウ

ヨコハマナガ ゴミムシ

タコノアシ

市民との協働、環境学習、ふれあいの場づくり

鶴見川流域センター (平成15年9月開館)

クリーンアップ活動

水辺プロムナード

梅田川 水辺の楽校 (平成9年4月開校)

イカダ フェスティバル

スロープ

河川環境の保全の基本方針

・多様な動植物の生息・生育環境の保全・回復に努めるとと もに、河川などで水と緑のネットワークの形成を図り、自然 環境を次世代に引き継ぐよう努める。

・良好な河川景観を維持するとともに、川と調和した沿川の まちづくりを関係機関と連携し進め、良好な河川景観の形 成を図る。

・流域の水循環系などの理解を促す学習を促進するため河 川とのふれあいの場の整備・保全を図る。