参考資料2-2

土器川水系河川整備基本方針

基本高水等に関する資料(案)

令和 年 月

国土交通省 水管理·国土保全局

1. 基本	5高水の検討
1.1	工事実施基本計画
1.2	河川整備基本方針1
1.3	河川整備基本方針策定後の状況2
1.4	新たな流出解析モデルの構築3
1.5	気候変動を踏まえた基本高水のピーク流量の設定19
1.6	対象降雨の継続時間の設定 20
1.7	河川の整備の目標となる洪水の規模及び対象降雨の降雨量の設定
1.8	主要降雨波形の設定
1.9	対象降雨の地域分布及び時間分布の検討36
1.10	主要洪水における降雨量(気候変動考慮)の引き伸ばしと流出解析40
1.11	アンサンブル予測降雨波形の検討46
1.12	既往洪水からの検討 55
1.13	総合的判断による基本高水のピーク流量の決定56
2. 高力	K処理計画
3. 計画	▣高水流量
4. 河道	自計画
5. 河川	管理施設等の整備の状況61

目 次

1. 基本高水の検討

1.1 工事実施基本計画

昭和43年(1968年)に一級河川の指定を受け、昭和44年(1969年)に基準地点祓川橋の 基本高水のピーク流量を1,100m³/s とする土器川水系工事実施基本計画を策定した。

その後、昭和 50 年(1975 年)8月洪水の発生及び流域の社会的、経済的発展を総合的に勘 案し、平成 2 年(1990 年)の土器川水系工事実施基本計画の改定で、計画規模1/100 と設定 して、基準地点祓川橋の基本高水のピーク流量を1,700m³/s とし、洪水調節施設により350m³/s の調節を行い、計画高水流量を1,350m³/s と定めた。

1.2 河川整備基本方針

平成9年(1997年)の河川法改正を受け、下記に示す手法により土器川水系工事実施基本 計画で策定された基本高水のピーク流量を検証した結果、基本方針においても、基準地点祓 川橋の基本高水のピーク流量1,700m³/sを踏襲することとし、平成19年(2007年)8月に土 器川水系河川整備基本方針(以降、既定計画という)を策定した。

1.2.1 年最大流量と年最大降雨量の経年変化

工事実施基本計画を改定した平成2年(1990年)以降、計画を変更するような大きな降雨、 洪水は発生していない。

1.2.2 雨量確率評価による検証

土器川の流域規模や降雨特性を踏まえ、工事実施基本計画の対象降雨継続時間の1日を6時間に見直し、年超過確率1/100規模の確率雨量254mm/6hを設定した。また、過去の主要な 洪水の降雨波形を確率雨量まで引き伸ばし、近年の主要な洪水ハイドロを再現する貯留関数 法の流出解析モデルを構築し、流出量を算出した。

この結果、基準地点祓川橋の基本高水のピーク流量は、昭和 50 年(1975 年) 8 月洪水型の 降雨波形より 1,700m³/s と算出した。

1.2.3 流量確率評価による検証

流量確率による検証の結果、1/100 規模の流量は、基準地点祓川橋で 1,650~1,960m³/s と推 定される。

1.2.4 既往洪水による検証

過去の洪水の氾濫痕跡や水害の記録より、大正元年(1912年)洪水が実績最大洪水と考え られるため、氾濫浸水範囲や浸水痕跡を概ね再現する流量を推定し、基本高水のピーク流量 の妥当性を検証した結果、大正元年(1912年)洪水における祓川橋地点のピーク流量は、1,580 ~1,700m³/s と推定される。

1.3 河川整備基本方針策定後の状況

平成19年(2007年)8月に既定計画を策定以降、基本高水のピーク流量(祓川橋1,700m³/s) を上回る洪水は発生しておらず、対象降雨量254mm/6hを超える降雨も発生していない。

図 1.3.1 年最大6時間雨量(基準地点祓川橋上流域平均雨量)

図 1.3.2 年最大流量(基準地点祓川橋)

1.4 新たな流出解析モデルの構築

降雨をハイドログラフに変換するための流出解析モデル(貯留関数法)については、既定 計画において見直し構築しているが、より精度の高い流出解析を可能にするため、新たな流 出解析モデルを構築した。

1.4.1 モデルの概要

流出解析モデルの基礎式は次のとおりである。

$$\frac{ds}{dt} = \frac{f(t)}{r(t)} - q(t + Tl)$$
$$s(t) = K \cdot q(t + Tl)^{p}$$
$$q(t) = \frac{3.6 \cdot Q(t)}{A}$$

ただし、

$$\sum r(t) < R_{sa}$$
の場合、 $f(t) = f_1$
 $\sum r(t) >= R_{sa}$ の場合、 $f(t) = 1.0$

また、流域からの流出量 Qca(t)は、基底流量 Qb(t)を含めて次の式で与える。

$$Q_{ca}(t) = \frac{1}{3.6} \cdot A \cdot q(t) + Q_b(t)$$

ここで、
 $s(t): 貯留高(mm)、 f(t): 流入係数、r(t): 流域平均降雨強度(mm/h)$
 $q(t): 直接流出高(mm/h)、Tl: 遅滞時間(mm/h)、K: 定数、P: 定数$
 $Q(t): 直接流出強度(m^3/s)、A: 流域面積(km^2)、 f_1: 一次流出率$
 $Q_{ca}(t): 流域からの流出量(m^3/s)、Q_b(t): 基底流量(m^3/s)$

河道区間の貯留関数及び連続方程式は、それぞれ下式で表される。

$$\begin{split} S_t(t) &= K \cdot Q_i(t)^P - Tl \cdot Q_l(t) \\ \frac{dS_l(t)}{dt} &= l(t) - Q_l(t) \\ Q_l(t) &= Q(t + Tl) \\ & ここで、 \\ S_t(t) : みかけの河道貯留量((m^3/s) \cdot h) \\ Q_l : 遅滞時間を考慮した流出量(m^3/s) \\ Q(t) : 流出量(m^3/s), l(t) : 流入量(m^3/s), Tl : 遅滞時間(h) \\ K, P : 河道による定数 \end{split}$$

1.4.2 流域及び河道分割

土器川水系における流域分割は、降雨の時空間分布を適確に反映させることを考え、既定 計画における流出解析モデルにおいて、流域及び河道分割を7小流域、5河道としている。

図 1.4.1に土器川流域分割図、図 1.4.2に流出解析モデル系統図、表 1.4.1及び表 1.4.2に貯 留関数法における流域・河道モデル分割諸元を示す。

図 1.4.1 土器川流域分割図

図 1.4.2 流出解析モデル系統図

表 1.4.1 流域・河道モデル分割諸元(流域分割)

流域番号	流域名	流域面積 (kẩ)
1	土器川上流域	14. 2
2	明神川流域	19. 7
3	前の川流域	15.8
4	柞野川流域	21.7
5	大谷川流域	19.3
6	大柞川流域	13. 1
7	古子川流域	23. 1

表 1.4.2 流域・河道モデル分割諸元 (河道)

河道番号	河道区間	延長 (km)
А	明神~前の川合流点	0.3
В	前の川合流点~御用橋	8.3
С	御用橋~常包橋	3. 4
D	常包橋~祓川橋	5.4
Е	祓川橋~丸亀橋	10. 7

1.4.3 定数の設定

(1) 定数設定の考え方

流出定数(流域定数:K、P、Tl、有効降雨定数:fl、Rsa)の設定に当たっては、近年の洪水のデータを用いること等によって、より精度の高い新たな流出解析モデルを構築した。

なお、検証地点は、土器川の流量観測3地点のうち、岩河床で河道断面変化が見られず、 実績流量の信頼性が高い「常包橋」を対象とした。

- 常包橋(主要な地点)
- ② 祓川橋(基準地点)
- ③ 丸亀橋(主要な地点)

(2) 有効降雨定数の設定

1) 有効降雨定数の検討対象洪水

有効降雨定数 fl、Rsa の設定は、各洪水の総雨量~総流出高の関係から、流出率が 1 と なる雨量(飽和雨量)を求める必要がある。そのためには、総雨量-総流出高の偏りがない よう選定する必要があることから、以下の考え方により対象洪水を選定した。

① 基準地点祓川橋の実績ピーク流量の上位 10 洪水(総雨量-総流出が大きい洪水)

なお、S50.8.23 洪水は常包橋が欠測のため、S51.9.12 洪水を選定した。

② 近年10カ年において、常包橋、祓川橋、丸亀橋のいずれかではん濫注意水位相当まで 水位が到達した洪水若しくは年最大水位を記録した洪水(総雨量-総流出が比較的小さ い洪水を含む洪水)

以上の考え方により、計20洪水を対象とした。(表 1.4.3参照)

					対象洪水		
		祓川橋実績		武川橋における	近年10ヵ年	の主要地点]
No	洪水名	ビーク流量 (m ³ /s)	順位	版川福における 実績ピーク流量 上位10洪水	氾濫注意水位相当 まで水位が到達し た洪水	年最大水位を 記録した洪水	備考
1	S50. 08. 23	1,024	2	0			常包橋欠測
2	S51.09.12	481	11	0			
3	S54. 09. 30	804	4	0			
4	H02.09.19	1,009	3	0			
5	H09.07.26	580	9	0			
6	H13.08.21	612	7	0			
7	H16. 09. 29	594	8	0			
8	H16.10.20	1,035	1	0			
9	H17.07.02	672	5	0			
10	H22.06.26	210	18			0	
11	H23. 05. 29	427	12		0		
12	H23. 09. 02	639	6	0	0	0	
13	H24.06.22	195	19			0	
14	H25.09.15	386	13			0	
15	H26.08.10	213	17			0	
16	H27.07.17	336	15			0	
17	H28.09.20	319	16			0	
18	H29.09.17	494	10	0	0	0	
19	H30.09.30	375	14			0	
20	R01.07.19	46	20			0	

表 1.4.3 有効降雨定数(f1、Rsa)の検討対象洪水

注) S50.08.23洪水は常包橋が欠測のため、祓川橋で上位洪水次点のS51.09.12洪水を対象に含めた。

2) 流出成分の分離

流域定数の設定を行う上で、実績流量のハイドログラフをもとに流出成分を分離し、 流域定数解析等の洪水ごとに fl、Rsa 検討地点を対象に、ハイドログラフの低減部の指 数低減性を利用する方法によって、直接流出成分と間接流出成分の分離を行い、各時刻 の直接流出と基底流量を求めた(図 1.4.3参照)。

一般に、ハイドログラフの低減部を片対数紙に描き、3本の直線で「表面流出成分」、 「中間流出成分」、「地下水流出成分」を近似すると、洪水の終わりから1つ目の折れ 点が中間流出の終了時点と考えられている。

初期損失雨量の設定については、洪水の立ち上がり以前の洪水は初期損失雨量として 取り扱い、総雨量に含めないものとして整理した。

次ページに成分分離を行った例を示す。

図 1.4.3 成分分離の概念図

図 1.4.4 成分分離結果(H17.7洪水:常包橋地点)

3) 計画 f1、Rsa の設定

流出率 fl 及び飽和雨量 Rsa は以下の方法により算出した。

- ① 常包橋地点の成分分離の結果と流域平均雨量を用いて、総降雨量 R(mm)と総流出 高 q(mm)をプロット。
- ② Rsa を仮定して、総雨量が Rsa より小さい点群について、その座標と原点を結ぶ直線の傾きの平均値 fl としたときに、総雨量が Rsa より大きい点群について、総降雨量と総流出高の差の平均値が Rsa×(1-fl)となることを満足するよう、Rsa を変化させて平均的な Rsa を算出。
- ③ 累加雨量が飽和雨量を上回った後の流出率(飽和流出率)は、1.0とする。

는 서내	一次損	失雨量
地点	f1	Rsa
常包橋	0.5	150

表 1.4.4 計画 f1、Rsa 設定結果

●f1領域のデータ群 ●f2領域のデータ群 Rsa f1 0.5 $Rsa \times (1-f1)$ 総雨量と総流出高の差の平均値 77.3 総流出高(mm) D Rsa=150mm 総雨量(mm)

(3) 流域定数(K、P、TI)の設定

流出計算に用いる流域定数 K、P、Tl は、上流域の降雨量と当該地点での流出量の関係が把握可能な地点で設定する必要がある。土器川において自然流況を把握可能な地点として、常包橋地点の実績流量上位 5 洪水を対象に、流量と流域平均雨量を用いて、貯留高一流出高関係図から流域定数 K、P、Tl を算出した。

具体的には、貯留高と流出高を両対数でプロットして貯留高一流出高関係図を作成し、TI を少しずつ変化させ、最もループが小さくなる TI を求める。求めた TI によって両対数でプ ロットした貯留高一流出高関係図を直線近似し、切片を K、傾きを P とした。

このようにして洪水ごとに K、P、Tl を求めることとし、大きな洪水における流出量の再現 性を考慮して K、P は最大流量となる洪水の定数を採用し、Tl は平均値を採用した。

No	24-1-7	常包橋実績流量		定数設定ケース別 対象洪水			流域定数	基準地点祓 川橋におけ	供老	
	供小名	ピーク流量 (m ³ /s)	順位	A	В	K	Р	TL (h)	る実績流量 順位	1用 名
3	S54. 09. 30	655	3		0	15.50	0.49	1.2	4	
4	H02.09.19	1, 085	1	0	0	29.90	0.30	2.0	3	
5	H09.07.26	538	4		0	5.69	0.75	1.0	9	
6	H13.08.21	505	5		0	13. 75	0.44	1.0	7	
8	H16. 10. 20	848	2		0	8.96	0.52	1.0	1	
ケーン	ケースA:常包橋地点実績ピーク流量最大洪水における流域定数					29.90	0.30	2.0		H02.09.19洪水
ケーン	ケースB:対象全洪水の流域定数の平均値					14.76	0.50	1.24		

表 1.4.5 流域定数(K、P、TL)設定結果

注1) 選定対象洪水における、常包橋地点ピーク流量の大きい順に評価。

: 今回検討における採用値

図 1.4.6 貯留高~流出高関係図(常包橋地点)【H02.09.19 洪水】

設定した常包橋地点における流域定数 K、P、Tl を用いて、リザーブ定数を用いた経験式により各小流域の K、P、Tl を以下の通りに設定した。

【リザーブの式】

- $K = \alpha \times C \times I^{-1/3} \times L^{1/3}$
 - α :定数
 - C:流域粗度(自然流域 0.12、都市流域 0.012)
 - I:流域勾配
 - L:流路長

流域	流域面積 (kml)	K	Р	遅滞時間 TL(h)	f1	Rsa (mm)
1	14.2	19.50	0.30	1.24	0.50	150
2	19. 7	23. 27	0. 30	1.24	0. 50	150
3	15.8	18.57	0.30	1.24	0.50	150
4	21.7	13.60	0. 30	1.24	0. 50	150
5	19.3	17.20	0.30	1.24	0.50	150
6	13. 1	14.11	0. 30	1.24	0. 50	150
7	23. 1	24.03	0. 30	1.24	0. 50	150

表 1.4.6 流域定数一覧

(4) 河道定数の設定

河道定数 K、P は、土器川流域における小流域間に設定された A 河道~E 河道において、 任意の流量 Q に対応する貯留量 S との関係から算出した。

ただし、土器川では山間部で急峻な河道を有する区間と、低平地で緩慢な勾配となる河道に大別される。

特に山間部で川幅も狭い A 河道については、貯留効果が小さいものと判断し、遅滞時間 Tlのみ設定した。

一方、貯留効果が大きいと思われる区間においては、不等流計算によって河道の S~Q 関係を求め、K、P を設定した。

また、河道の遅滞時間 Tl は、定流の貯留関数と洪水流の貯留関数の関係から求めた。

河道	河道延長	ĸ	D	遅滞時	借去		
No	(km)	К	Г	TL	TL*	加石	
А	0.3	—	—	0.00	—	TLのみ設定	
В	8.3	3.32	0.688	0.17	—		
С	3.4	1.70	0.704	0.09	—		
D	5.4	2.38	0. 725	0.10	—		
Е	10.7	7.73	0.682	0.27	—		

表 1.4.7 河道定数一覧

1.4.4 流出解析モデルの検証

前節までに設定した定数及び、既往洪水時の雨量データを用い、再現計算を実施した。 対象洪水は基準地点祓川橋における実績ピーク流量の上位3洪水とした。

再現計算の結果、急流河川特有の出水の早い洪水立ち上がり部の波形とピーク流量の再 現性が良好である。

No	洪水名	基準地点 祓 ピーク流量 (m ³ /s)	基準地点 祓川橋 ピーク流量 (m ³ /s) 順位		備考
1	S50. 08. 23	1,024	2	151.3	
2	H02.09.19	1,009	3	183.0	
3	H16. 10. 20	1,035	1	170.9	

表 1.4.8 検証対象洪水一覧

【昭和 50 年 8 月 23 日洪水】

【平成2年9月19日洪水】

1.5 気候変動を踏まえた基本高水のピーク流量の設定

1.5.1 基本高水のピーク流量設定の考え方

基本高水のピーク流量は、前述した流出解析モデルを用いて、以下の項目について総合的 に判断し設定する。

- (1) 既定計画の基本高水のピーク流量
- (2) 気候変動を考慮した時間雨量データによる確率からの検討
- (3) アンサンブル予測降雨波形を用いた検討
- (4) 既往洪水からの検討

1.5.2 計画規模の設定

既定計画策定時と流域の重要度等に大きな変化がないことから、計画規模は既定計画と同様の 1/100 とした。

1.6 対象降雨の継続時間の設定

1.6.1 対象降雨の継続時間設定の考え方

土器川流域における対象降雨の継続時間は、①洪水到達時間、②ピーク流量と短時間雨量 との相関関係及び③強度の強い降雨の継続時間を整理し設定した。

1.6.2 洪水到達時間

洪水到達時間は、以下に示す(1)Kinematic Wave 法に基づく式及び(2)角屋の式を用いて算定 した。対象洪水は、基準地点祓川橋における実績流量上位 10 洪水とした。

(1) Kinematic Wave 法による洪水の到達時間

Kinematic Wave 法は矩形斜面上の表面流に Kinematic Wave 理論を適用して洪水到達時間 を導く手法である。

(2) 角屋の式による洪水の到達時間

角屋の式は Kinematic Wave 理論の洪水到達時間を表す式に、河道長と地形則を考慮した式である。

各手法で算出した洪水到達時間を以下に示す。

- Kinematic Wave 法 : 3~10 時間(平均6時間)
- 角屋の式 : 4~5.2時間(平均5時間)

(1)及び(2)の計算結果を表 1.6.1に示し、洪水ごとの Kinematic Wave 法による洪水到達時間の検討結果を図 1.6.1に示す。

洪水名		-1-11-145	kinematicWave法	角屋の式			
				平均有効 降雨強度 (mm/h)	洪水到達時間 T p (h)		
1	H16. 10. 20	1, 035	3	32. 3	4.0		
2	S50. 08. 23	1, 024	7	23. 7	4.4		
3	H02. 09. 19	1, 009	6	30. 5	4. 1		
4	S54. 09. 30	804	7	29. 7	4. 1		
5	H17.07.02	672	5	24. 8	4.4		
6	H23. 09. 02	639	6	16.0	5. 1		
7	H13. 08. 21	633	5	17.0	5.0		
8	H16. 09. 29	594	6	18.0	4. 9		
9	9 H09. 07. 26 591		10	15. 3	5.2		
10 H29. 09. 17 494		7	22. 3	4. 5			
平均(h)			6. 2		4.6		

表 1.6.1 洪水到達時間の算定結果

図 1.6.1(1) Kinematic Wave 法による洪水到達時間(昭和 50 年 8 月洪水)

図 1.6.1(2) Kinematic Wave 法による洪水到達時間(昭和54年9月洪水)

図 1.6.1(3) Kinematic Wave 法による洪水到達時間(平成2年9月洪水)

図 1.6.1(4) Kinematic Wave 法による洪水到達時間(平成9年7月洪水)

図 1.6.1(5) Kinematic Wave 法による洪水到達時間(平成 13 年 8 月洪水)

図 1.6.1(6) Kinematic Wave 法による洪水到達時間(平成 16 年 9 月洪水)

図 1.6.1(7) Kinematic Wave 法による洪水到達時間(平成 16 年 10 月洪水)

図 1.6.1(8) Kinematic Wave 法による洪水到達時間(平成17年7月洪水)

図 1.6.1(9) Kinematic Wave 法による洪水到達時間(平成 23 年 9 月洪水)

図 1.6.1(10) Kinematic Wave 法による洪水到達時間(平成 29 年 9 月洪水)

1.6.3 ピーク流量と短時間雨量の相関

昭和 50 年(1975 年)から令和 3 年(2021 年)までの期間で基準地点祓川橋において年最 大流量を記録した洪水を対象に、ピーク流量とピーク流量生起時刻から遡る短時間雨量(1 ・2・3・6・12・18・24・36・48時間雨量)との相関関係の整理を行った。

その結果、基準地点祓川橋では6時間以上でピーク流量と短時間雨量の相関が高くなる。

この検討結果を図 1.6.2に示す。また、定義①によるピーク流量と短時間雨量の相関図を図 1.6.3 に示し、定義②によるピーク流量と短時間雨量の相関図を図 1.6.4に示す。

図 1.6.2 ピーク流量と相関の高い短時間雨量

図 1.6.3 ピーク流量と流域平均時間雨量の相関図【定義①】

図 1.6.4 ピーク流量と流域平均時間雨量の相関図【定義②】

1.6.4 強い降雨強度の継続時間

強い降雨強度(5mm/h、10mm/h 及び 15mm/h)の継続時間を整理した。対象洪水は、基準 地点祓川橋における実績流量上位 10 洪水とした。

主要洪水における降雨量 5mm/h 以上の継続時間の平均値は 11 時間、降雨量 10mm/h 以上の継続時間の平均値は 8 時間であるが、さらに強度の強い降雨量 15mm/h 以上の継続時間で 平均 5 時間となり、流域面積が小さく、出水が早い流出特性を有する土器川の洪水ピーク流 量を形成している強い降雨強度の継続時間として、概ね6時間でカバー可能である。

1.6.5 対象降雨の降雨継続時間の設定

昭和 50 年(1975 年)から令和 3 年(2021 年)までの雨量資料(47 年間)を整理し、土器 川の降雨特性、ピーク流量との相関から総合的に判断して、下記の理由により対象降雨の降 雨継続時間は 6 時間と設定した。

【基準地点祓川橋】

- 洪水到達時間の検討において、Kinematic Wave 法では 3~10 時間(平均 6 時間)、角 屋式では 4~5.2 時間(平均 5 時間)となる。
- ピーク流量と相関の高い短時間雨量は、6時間以上で実績ピーク流量との相関が高く、
 定義①、②ともに相関係数は概ね 0.77 以上となる。
- 洪水のピーク流量を形成している強い降雨強度の継続時間は、15mm/h 以上で平均 5 時間である。
- ピーク流量に支配的な短時間雨量との関係、実績降雨における一雨降雨の継続時間等 から、総合的に判断して6時間と設定する。

1.7 河川の整備の目標となる洪水の規模及び対象降雨の降雨量の設定

1.7.1 対象降雨の降雨量の設定

降雨継続時間は、Kinematic Wave 法及び角屋の式による洪水到達時間、短時間雨量と洪水 ピーク流量の相関、降雨強度の強い降雨の継続時間から総合的に判断した結果、既定計画を 踏襲して6時間に設定した。

対象降雨の降雨量は、降雨量変化倍率の算定に用いている過去実験の期間が平成 22 年 (2010年)までであることを踏まえ、既定計画からの雨量標本のデータ延伸は平成 22 年(2010 年)までにとどめ、平成 22 年(2010年)までの雨量標本(表 1.7.2)を用いて定常の水文統 計解析により 1/100 確率雨量を算定し、これに降雨量変化倍率を乗じた値とした。

基準地点祓川橋の 1/100 確率雨量は、昭和 33 年(1958 年)から平成 22 年(2010 年)までの 53 年間の年最大 6 時間雨量を確率処理し、適合度の基準を満足し、安定性の良好な確率分 布モデル (LN2PM)による 233.5mm/6h と決定した。その結果を表 1.7.1に、グラフを図 1.7.1 に示す

表 1.7.1 基準地点祓川橋 6 時間雨量 1/100 確率計算結果

水系名	土器川水系
河川名	土器川
地点名	祓川橋
データ件数	53(S33~H22)
α	0.4

	Exp	Gumbel	SqrtEt	Gev	LP3Rs	LogP3	Iwai	IshiTaka	LN3Q	LN3PM	LN2LM	LN2PM	LN4PM
X-COR(99%)	0.979	0.974	0.975	0.967	0.979	0.971	0.974	_	0.977	_	0.977	0.978	_
P-COR(99%)	0.987	0.985	0.996	0.996	0.988	0.996	0.996	_	0.995	-	0.994	0.994	-
SLSC(99%)	0.042	0.049	0.041	0.037	0.047	0.029	0.028	_	0.030	_	0.031	0.031	-
対数尤度	-257.8	-267.8	-264.5	-264.7	-266.6	-264.3	-264.2	-	-264.5	-	-264.7	-264.7	-
pAIC	519.5	539.6	533	535.4	539.2	534.6	534.4	_	535.0	_	533.5	533.5	_
X-COR(50%)	0.958	0.964	0.946	0.932	0.969	0.971	0.944	-	0.951	-	0.953	0.953	-
P-COR(50%)	0.992	0.989	0.992	0.992	0.989	0.996	0.992	_	0.991	_	0.991	0.991	_
SLSC(50%)	0.067	0.091	0.081	0.074	0.092	0.067	0.065	_	0.075	_	0.076	0.077	_

確率水文量	確率年	Exp	Gumbel	SqrtEt	Gev	LP3Rs	LogP3	Iwai	IshiTaka	LN3Q	LN3PM	LN2LM	LN2PM	LN4PM
	2	63.8	71.2	66.9	66.3	70.0	66.4	66.3	-	67.6	-	68.1	68.1	-
	3	83.2	89.6	83.4	83.0	89.5	83.7	84.0	-	84.9	-	85.7	85.5	-
	5	107.5	110.2	103.6	103.9	111.4	105.3	106.1	-	105.7	-	106.8	106.3	-
	10	140.5	136.0	131.7	134.0	138.4	136.1	137.0	_	134.0	-	135.1	134.2	-
	20	173.5	160.7	161.4	167.5	163.5	169.6	170.0	_	163.1	-	164.1	162.7	-
	30	192.8	174.9	179.7	189.2	177.5	190.7	190.4	_	180.8	-	181.6	179.9	1
	50	217.2	192.7	203.8	218.9	194.6	219.1	217.4	_	203.8	_	204.2	202.1	-
	80	239.6	209.0	227.0	248.9	209.9	247.2	243.7	_	225.8	_	225.8	223.2	-
	100	250.2	216.7	238.4	264.2	217.0	261.3	256.6	-	236.5	-	236.3	233.5	

laakKnifa	破密在	Eve	Cumhal	CautEt	Carr		L a «D2	Innei	Jahi Taka	1 N2O		L NOL M	LN2DM	
Jackinine	谁辛牛	Exp	Gumber	SqriEi	Gev	LFORS	Logro	Iwai	Isrii Taka	LING	LINGPIN	LINZLIVI	LINZPIN	LIN4PIVI
推定誤差	2	4.7	5.4	4.9	5.6	6.3	5.4	5.3	-	5.3	_	4.9	4.9	-
	3	6.7	7.5	6.8	7.7	8.8	7.3	7.1	I	7.0	I	6.9	6.8	-
	5	9.6	10.0	9.3	10.1	11.2	9.7	9.5	-	9.5	Ι	9.9	9.5	-
	10	13.8	13.2	13.2	13.4	13.4	13.6	13.1	I	13.5	I	14.6	13.7	-
	20	18.1	16.4	17.6	17.0	14.5	18.4	17.5	-	18.3	Ι	20.1	18.7	-
	30	20.6	18.3	20.3	19.5	14.7	21.9	20.6	-	21.5	-	23.7	21.9	-
	50	23.8	20.6	24.0	23.3	14.7	27.2	25.1	-	26.1	-	28.6	26.3	-
	80	26.7	22.7	27.6	27.8	14.6	33.3	29.8	-	30.7	-	33.5	30.7	-
	100	28.1	23.7	29.4	30.3	14.6	36.5	32.3	-	33.1	-	35.9	32.9	-

赤字:適合度の基準(SLSC≦0.04)を満足する確率分布モデル

青字:安定性(pAIC が最小※)が良好な確率分布モデル

※pAIC が同値の場合は Jackknife 推定誤差が小さい方

図 1.7.1 雨量確率計算結果

(基準地点祓川橋 6 時間雨量 昭和 33 年 (1958 年) ~ 平成 22 年 (2010 年)

No	西暦	年	月	Н	祓川橋	No	西暦	年	月	Н	祓川橋
	<u></u> п'п			Ι	mm/6h		Ц́П			Ι	mm/6h
1	1958	S33	7	2	86.8	28	1985	S60	7	1	24.2
2	1959	S34	9	26	179.8	29	1986	S61	5	20	40.1
3	1960	S35	7	7	80.2	30	1987	S62	10	17	125.2
4	1961	S36	9	16	92.1	31	1988	S63	6	3	64.7
5	1962	S37	6	14	66.3	32	1989	H01	8	27	76.0
6	1963	S38	6	5	42.7	33	1990	H02	9	19	183.0
7	1964	S39	9	25	54.4	34	1991	H03	7	4	40.7
8	1965	S40	9	10	99.3	35	1992	H04	5	8	39.2
9	1966	S41	7	2	38.3	36	1993	H05	9	4	74.2
10	1967	S42	10	28	69.6	37	1994	H06	9	29	95.4
11	1968	S43	7	28	61.3	38	1995	H07	7	4	64.2
12	1969	S44	8	23	58.8	39	1996	H08	8	14	44.6
13	1970	S45	7	6	77.6	40	1997	H09	7	26	109.0
14	1971	S46	8	31	95.4	41	1998	H10	9	22	139.8
15	1972	S47	9	16	179.3	42	1999	H11	9	15	60.3
16	1973	S48	9	22	22.5	43	2000	H12	11	2	43.9
17	1974	S49	9	9	80.2	44	2001	H13	8	21	101.7
18	1975	S50	8	23	151.3	45	2002	H14	7	10	36.2
19	1976	S51	9	12	66.6	46	2003	H15	8	9	70.9
20	1977	S52	9	9	60.6	47	2004	H16	10	20	170.9
21	1978	S53	6	16	53.5	48	2005	H17	7	2	151.4
22	1979	S54	9	30	200.4	49	2006	H18	6	23	37.7
23	1980	S55	10	14	68.0	50	2007	H19	6	9	35.8
24	1981	S56	7	8	30.1	51	2008	H20	9	6	48.6
25	1982	S57	9	25	58.6	52	2009	H21	8	10	54.7
26	1983	S58	9	28	59.0	53	2010	H22	6	26	48.1
27	1984	S59	8	15	45.1						

表 1.7.2 年最大6時間雨量一覧(祓川橋上流域)

項目	祓川橋	備考
		確率手法 SLSC≦0.04
1/100 確率雨量	233. 5mm/6h	pAIC 最小※
		※pAIC最小が同値の場合はJackknife推定 誤差が小さい方
気候変動を	257mm/6b	922 5mm/6b× 咚西号亦化住玄 1 1
考慮した降雨量	2571111/011	233. 5000/01 4 阵雨重変化后半1.1

表 1.7.3 1/100 確率規模降雨量(基準地点祓川橋)

また、気候変動の影響を考慮した対象降雨の降雨量は、基準地点祓川橋の 1/100 確率雨量 233.5mm/6h に降雨量変化倍率 1.1 倍を乗じて得られた 257mm/6h と設定した(表 1.7.3)。

参考として、近年降雨の気候変動の影響等を確認するため、雨量標本に「非定常状態の検 定:Mann-Kendall 検定等」を行った上で、非定常性が確認されない場合は最新年までデータ を延伸し、非定常性が確認された場合は「非定常性が現れるまでのデータ延伸」にとどめ、 定常の水文統計解析による確率雨量の算定等も併せて実施した。

(1) Mann-Kendall 検定(定常/非定常性を確認)

昭和42年(1967年)~平成22年(2010年)までの雨量データに一年ずつ雨量データを追加し、令和4年(2022年)までのデータを対象とした検定結果を確認した。

⇒非定常性は確認されなかったため、近年降雨までデータ延伸を実施した。

(2) 近年降雨までデータ延伸を実施

非定常性が確認されなかったことから、最新年(令和3年(2021年))まで時間雨量デー タを延伸し、水文解析に一般に用いられる確率モデルによる 1/100 確率雨量から、適合度の 基準を満足し、安定性の良好な確率分布モデルを用いて 1/100 確率雨量を算定した。

⇒令和3年(2021年)までの雨量データを用いた場合の基準地点祓川橋 1/100 における確 率雨量は 229mm/6h (LN2PM)となりデータ延伸による確率雨量に大きな差がないこと を確認した。

1.8 主要降雨波形の設定

基本高水の検討対象洪水において、短時間に降雨が集中する洪水や降雨の範囲が著しく偏った洪水を一律拡大すると、引き伸ばし後の短時間雨量が非現実的な確率値となる場合がある。

そのため、引き伸ばし後の降雨の地域分布及び時間分布を確認し、対象降雨としての妥当 性評価により代表的な洪水に適さない洪水については検討対象から除外した上で対象降雨波 形を設定する。

検討対象洪水の選定は、令和3年(2021年)までの基準地点祓川橋で氾濫注意水位相当流 量以上、かつ基準地点祓川橋のピーク流量生起時刻前後の最大6時間雨量の拡大率が2倍以 下(1.1倍する前の確率雨量)となる10洪水を選定した(図 1.8.1)。

選定した洪水を対象に、降雨波形を気候変動考慮後の 1/100 確率雨量 257mm/6h (233.5mm/6h×1.1) となるよう引き伸ばして流出解析を行った結果、基準地点祓川橋におけるピーク流量は、1,168m³/s~2,039m³/s となる(表 1.8.1)。

				祓川橋上流域		_		
No	洪水生起日	要因	実績雨量	計画規模の 降雨量 ×1.1倍	拡大率	祓川橋地点 ピーク流量		
			(mm/6h)	(mm/6h)		(m^3/s)		
1	S34.09.26	台風第15号	179.8	257	1.429	1,490		
2	S47.09.16	台風第20号	179.3	257	1.433	1, 539		
3	S50.08.23	台風第6号	151.3	257	1.699	1,881		
4	S54.09.30	台風第16号	200. 4	257	1.282	1, 299		
5	S62.10.17	台風第19号	125.2	257	2.053	1,364		
6	H02.09.19	台風第19号	182.9	257	1.405	1,474		
4	H10.09.22	台風第7号	139.8	257	1.838	1, 416		
8	H16.10.20	台風第23号	170.9	257	1.504	1, 387		
9	H17.07.02	梅雨前線	151.4	257	1.697	2,039		
10	H29.09.17	台風第18号	150.3	257	1.710	1, 168		

表 1.8.1 選定洪水のピーク流量一覧(基準地点祓川橋)

1.9 対象降雨の地域分布及び時間分布の検討

1.9.1 考え方

基本高水の検討対象洪水において、「短時間に降雨が集中する洪水」や「降雨の範囲が著 しく偏った洪水」等を一律拡大すると、引き伸ばし後の短時間雨量が非現実的な確率値とな る場合がある。

そのため、実績降雨波形を対象降雨波形として採用するには、確率水文量への引き伸ばし によって異常な降雨になっていないか十分にチェックする必要がある。

従って、前述「1.8」で選定した洪水について、引き伸ばし後の降雨の時間分布を確認し、 対象降雨としての妥当性評価により代表的な洪水に適さない洪水については検討対象から除 外した上で対象降雨波形を設定した。

1.9.2 棄却基準の設定

地域分布及び時間分布の異常な降雨として、1/500以上の降雨をその判断基準とした。

なお、引き伸ばし後の降雨量は気候変動による降雨量の増大を考慮しない雨量(降雨量変 化倍率を乗じる前の雨量)とした。

1.9.3 地域分布の評価

(1) 対象地域の設定

対象地域は、図 1.9.1に示すとおりであり、祓川橋より上流域について、上流域(流域A) と中流域(流域B)に分割した2地域を設定した。

図 1.9.1 地域分布評価の検討対象地域位置図

(2) 棄却基準の設定

各設定地域における棄却基準値を設定した。確率雨量は、昭和 33 年(1958 年) ~平成 22 年(2010 年)の各流域の年最大 6 時間雨量について確率計算を行い、各計算手法の中で SLSC≦0.04 で pAIC が最小になる確率分布モデルにおける 1/500 確率雨量を採用した。

(3) 地域分布の雨量評価

設定地域について、拡大後雨量の異常性評価を行った。

各地域の拡大後雨量及び棄却基準値(1/500 確率雨量)は表 1.9.1に示すとおりであり、棄 却洪水は確認されなかった。

			祓川橋	引き伸し率		地域	載分布の	D棄却判定			
			実績	5101101		祓川林	喬上流均	或6時間雨量	-		计会
No	洪水名	要因	0時间 雨量	1/100確率	L	L流域A		4	中流域B		
				0时间 雨量	6時間	1/500		6時間	1/500		選定
			雨量	LN2PM	雨量	Exp	判定	雨量	Exp	判定	
			(mm)	233. 5mm	(mm)	361.5mm		(mm)	311. 2mm		
1	S34. 09. 26	台風第15 号	179. 8	1. 299	213.3	277. 1	0	149.1	193. 7	0	•
2	S47. 09. 16	台風第20号	179. 3	1. 302	159. 7	207. 9	0	197. 3	256. 9	0	•
3	S50. 08. 23	台風第6号	151. 3	1. 543	179.7	277. 3	0	125. 1	193. 0	0	•
4	S54. 09. 30	台風第16号	200. 4	1. 165	212. 9	248. 0	0	188.9	220. 1	0	•
5	S62. 10. 17	台風第19号	125. 2	1.865	121.4	226. 4	0	128.7	240. 0	0	•
6	H02.09.19	台風第19号	182. 9	1. 277	217.8	278. 1	0	151.0	192. 8	0	•
7	H10. 09. 22	台風第7号	139. 8	1.670	150. 4	251.2	0	130. 1	217. 3	0	•
8	H16. 10. 20	台風第23号	170. 9	1. 366	167. 9	229. 4	0	173.6	237. 1	0	•
9	H17.07.02	梅雨前線	151.4	1. 542	153.6	236. 9	0	149.4	230. 4	0	•
10	H29.09.17	台風第18号	150. 3	1. 554	135.8	211.0	0	163.7	254. 4	0	•

表 1.9.1 地域分布による拡大後雨量の確率評価結果

1.9.4 時間分布の評価

時間分布の検討では、洪水到達時間相当の短時間雨量にて過度に引き伸ばしがされていないか確認を行った。

(1) 対象時間の設定

対象時間は、流域面積が小さいことから、洪水到達時間と 1/2 洪水到達時間(4 時間の 1/2=2 時間)から設定した(表 1.9.2)。

なお、洪水到達時間は、Kinematic Wave 法による洪水到達時間の最小値が3時間、角屋の 式による洪水到達時間の最小値が4時間であることから、4時間を設定した。

表 1.9.2 対象時間の設定

基準地点	時間分布の棄却基準						
祓川橋	洪水到達時間 4 時間	1/2 洪水到達時間 2 時間					

(2) 棄却基準値の設定

対象時間における棄却基準値を設定した。

確率雨量の算定は、昭和 33 年(1958 年) ~平成 22 年(2010 年)までの年最大時間雨量に ついて確率計算を行い、各計算手法の中で SLSC≦0.04 で pAIC が最小になる確率分布モデル における 1/500 確率雨量を採用した。

(3) 時間分布の雨量評価

前項にて設定した棄却基準値をもとに、著しい引き伸ばしとなっていないかを確認した。 各時間の拡大後雨量及び棄却基準値は表 1.9.3に示すとおりであり、棄却洪水は確認されな かった。

			祓川橋	引き伸し率		時間	『分布の	D棄却判定			
			実績	JICHOT		祓	川橋上	流域雨量			计在
No	洪水名	要因	0時间 雨量	1/100確率	洪水到	達時間内雨	量	1/2洪水3	1/2洪水到達時間内雨		刘承 洪水
				雨量	4時間	1/500		2時間	1/500		選定
			雨量	LN2PM	雨量	Exp	判定	雨量	Exp	判定	
			(mm)	233. 5mm	(mm)	245.6mm		(mm)	147. Omm		
1	S34. 09. 26	台風第15号	179. 8	1. 299	143.4	186. 3	О	83. 1	107. 9	0	•
2	S47. 09. 16	台風第20号	179. 3	1. 302	139. 7	181. 9	0	76. 0	99. 0	0	•
3	S50. 08. 23	台風第6号	151. 3	1. 543	117.4	181. 1	0	69. 9	107. 9	0	•
4	S54. 09. 30	台風第16号	200. 4	1.165	165.5	192. 8	0	104. 4	121.6	0	•
5	S62. 10. 17	台風第19号	125. 2	1.865	83. 3	155. 4	0	44. 0	82. 1	0	•
6	H02.09.19	台風第19号	182. 9	1. 277	119.3	152. 3	0	64. 0	81.7	0	•
7	H10. 09. 22	台風第7号	139. 8	1.670	109. 1	182. 2	0	59. 5	99. 4	0	•
8	H16. 10. 20	台風第23号	170. 9	1. 366	125.6	171.6	0	65. 7	89. 7	0	•
9	H17.07.02	梅雨前線	151.4	1. 542	104. 0	160. 4	0	88. 5	136.5	0	•
10	H29.09.17	台風第18号	150. 3	1.554	118.7	184. 5	0	73.5	114. 2	0	•

表 1.9.3 時間分布による拡大後降雨の確率評価結果

1.10 主要洪水における降雨量(気候変動考慮)の引き伸ばしと流出解析

主要洪水を対象に、6時間雨量に対して、1/100規模の1.1倍となるように引き伸ばし降雨 波形を作成した後、流出解析を行った結果、基準地点祓川橋におけるピーク流量、1,168m³/s ~2,039m³/sとなった。基準地点祓川橋におけるピーク流量の一覧を表 1.10.1に、洪水ごとの ハイドログラフを図 1.10.1に示す。

				祓川橋上流域			
No	洪水生起日	要因	実績雨量	計画規模の 降雨量 ×1.1倍	拡大率	祓川橋地点 ピーク流量	棄却
			(mm/6h)	(mm/6h)		(m^3/s)	
1	S34. 09. 26	台風第15号	179.8	257	1.429	1,490	
2	S47.09.16	台風第20号	179.3	257	1.433	1,539	
3	S50. 08. 23	台風第6号	151.3	257	1.699	1,881	
4	S54. 09. 30	台風第16号	200.4	257	1.282	1,299	
5	S62. 10. 17	台風第19号	125.2	257	2.053	1,364	
6	H02.09.19	台風第19号	182.9	257	1.405	1,474	
4	H10.09.22	台風第7号	139.8	257	1.838	1,416	
8	H16. 10. 20	台風第23号	170.9	257	1.504	1,387	
9	H17.07.02	梅雨前線	151.4	257	1.697	2,039	
10	H29.09.17	台風第18号	150.3	257	1.710	1,168	

表 1.10.1 ピーク流量一覧(祓川橋地点)

図 1.10.1(1) 主要降雨波形のハイドログラフ 昭和 34 年 9 月 26 日洪水(祓川橋地点)

図 1.10.1(2) 主要降雨波形のハイドログラフ 昭和 47 年 9 月 16 日洪水(祓川橋地点)

図 1.10.1(3) 主要降雨波形のハイドログラフ 昭和 50 年 8 月 23 日洪水(祓川橋地点)

図 1.10.1(4) 主要降雨波形のハイドログラフ 昭和 54 年 9 月 30 日洪水(祓川橋地点)

図 1.10.1(5) 主要降雨波形のハイドログラフ 昭和 62 年 10 月 17 日洪水(祓川橋地点)

図 1.10.1(6) 主要降雨波形のハイドログラフ 平成2年9月19日洪水(祓川橋地点)

図 1.10.1(7) 主要降雨波形のハイドログラフ 平成 10 年 9 月 22 日洪水(祓川橋地点)

図 1.10.1(8) 主要降雨波形のハイドログラフ 平成 16 年 10 月 20 日洪水(祓川橋地点)

図 1.10.1(9) 主要降雨波形のハイドログラフ 平成 17 年 7 月 2 日洪水(祓川橋地点)

図 1.10.1(10) 主要降雨波形のハイドログラフ 平成 29 年 9 月 17 日洪水(祓川橋地点)

1.11 アンサンブル予測降雨波形の検討

1.11.1 アンサンブル予測降雨波形による流出解析

気候変動アンサンブルデータは、文部科学省・気候変動リスク情報創世プログラム及び海 洋研究開発機構・地球シミュレータ特別推進課題において作成された地球温暖化対策に資す るアンサンブル機構予測データベース(d4PDF) (20km メッシュ)であり、過去実験として 3,000 年分、将来実験として 5,400 年分(4℃上昇)、3,240 年分(2℃上昇:d2PDF)という国 内でも類を見ない大量のデータで構成されており、物理的に発生し得る様々な気象パターン を想定することが可能である。

さらに、短時間・局所的な極端降雨、地形性降雨を充分に表現できるように、海洋研究開 発機構のスーパーコンピュータ「地球シミュレータ」を用い、解像度(5kmメッシュ)にNHRCM (気象庁の地域気候モデル)を用いて力学的ダウンスケーリング(DS)を行っている。

解像度 5km メッシュにダウンスケーリングされたアンサンブルデータ(過去実験、将来実験(2℃上昇))におけるアンサンブル予測降雨波形から、計画対象降雨の降雨量 257mm/6h (基準地点祓川橋)に近い洪水を抽出した。抽出した 10 洪水は、中央集中や複数の降雨ピー クがある波形等、様々なタイプの降雨波形を含んでいることを確認した。

また、抽出した洪水の降雨波形を、気候変動を考慮した 1/100 確率規模の6時間雨量257mm (基準地点祓川橋)まで調整し、流出解析モデルにより流出量を算出した結果、表 1.11.1に 示すとおり約 842m³/s~2,368m³/s の範囲となり、雨量データによる確率からの検討により算 出された流量が数値の範囲に収まっていることを確認した。

図 1.11.1 アンサンブル予測降雨波形からの抽出(基準地点祓川橋)

- d2PDF(将来 360 年、現在 360 年)の年最大雨量標本(360 年)を対象
- 著しい引き伸ばし等によって降雨波形をゆがめることがないよう、対象降雨の降雨量近傍の10洪水(上図の赤点線内の降雨)を抽出

	No	洪水名	祓川橋地点 6時間雨量 (mm/6h)	気候変動後 1/100雨量 (mm/6h)	拡大率	祓川橋地点 ピーク流量 (m ³ /s)	備考
	1	HFB_2K_MR_m101_2079	279.2		0.920	1, 411	
	2	HFB_2K_GF_m101_2071	247.2		1.040	1, 387	
	3	HFB_2K_MP_m105_2083	242.8		1.058	1,734	
将来	4	HFB_2K_MR_m105_2077	242.6	257	1.059	2, 368	最大
	5	HFB_2K_MP_m105_2090	242.3		1.061	842	最小
	6	HFB_2K_MR_m105_2070	239.8		1.072	1,831	
	7	HFB_2K_MI_m101_2086	236.0		1.089	1,594	
	8	HPB_m003_1988	273.7		0. 939	1,342	
過去	9	HPB_m007_2002	249.2	257	1.031	1,581	
	10	HPB_m009_1999	237.7		1.081	1,523	

表 1.11.1 アンサンブル予測降雨波形のピーク流量一覧(基準地点祓川橋)

図 1.11.2(1) 抽出した予測降雨波形(将来実験)のハイドログラフ(基準地点祓川橋)

図 1.11.2(2) 抽出した予測降雨波形(将来実験)のハイドログラフ(基準地点祓川橋)

図 1.11.2(3) 抽出した予測降雨波形(将来実験)のハイドログラフ(基準地点祓川橋)

図 1.11.2(4) 抽出した予測降雨波形(過去実験)のハイドログラフ(基準地点祓川橋)

1.11.2 棄却された実績引き伸ばし降雨における発生の可能性検討

気候変動による降雨パターンの変化(特に小流域集中度の変化)により、これまでの手法 で棄却されていた実績引き伸ばし降雨波形の発生が十分予想される場合がある。このため、 これまでの手法で棄却されていた実績引き伸ばし降雨波形を、当該水系におけるアンサンブ ル予測降雨波形による降雨パターンと照らし合わせる等(①地域分布のチェック、②時間分 布のチェック)により再検証を行うこととなる。

① 地域分布のチェック

d2PDF(将来気候)から対象降雨の降雨量近傍のアンサンブル予測降雨波形(将来実験) を抽出し、各波形について「基準地点上流域の流域平均雨量に対する小流域の流域平均雨量 の比率」(小流域の流域平均雨量/基準地点上流域平均雨量)を求める。

時間分布で棄却した引き伸ばし降雨波形も同様に比率を求め、実績引き伸ばし降雨波形の 比率がアンサンブル予測降雨波形による比率を下回っている場合は、対象降雨波形に含める ものとする。

② 時間分布のチェック

d2PDF(将来気候)から対象降雨の降雨量近傍のアンサンブル予測降雨波形(将来実験) を抽出し、各波形について「対象降雨の継続時間内雨量に対する短時間雨量の比率」を求める。

時間分布で棄却した引き伸ばし降雨波形も同様に比率を求め、実績引き伸ばし降雨波形の 比率がアンサンブル予測降雨波形による比率を下回っている場合は、対象降雨波形に含める ものとする。

主要降雨波形群として選定した 10 洪水について、基準地点祓川橋の 1/100 確率雨量 233.5mm/6h に引伸ばした結果、棄却洪水は確認されなかったため、上記の検討は対象外とした。

52

1.11.3 主要洪水群に不足する降雨パターンの確認

これまで、実際に生じた降雨波形のみを計画対象の降雨波形としてきたが、基本高水の設 定に用いる計画対象の降雨波形群は、対象流域において大規模洪水を生起し得る様々なパタ ーンの降雨波形等を含んでいる必要がある。

気候変動等による降雨特性の変化によって、追加すべき降雨波形が無いかを確認するため、 アンサンブル予測降雨波形を用いて空間分布のクラスター分析を行い、将来発生頻度が高ま るものの計画対象の実績降雨波形が含まれていないクラスターを確認した。

波形パターンの解析にはクラスター分析を用いた。土器川流域では、アンサンブル予測降 雨波形群を対象に、4つのクラスターに分類されることが明らかとなっている。

基準地点祓川橋で選定された主要洪水群について、クラスター分析を行った結果、クラス ター1・2 と評価された(表 1.11.2)。

基準地点祓川橋においてアンサンブル予測降雨波形(将来実験)から対象波形に含まれな いクラスター3・4 に該当する洪水を対象降雨量近傍から抽出し、気候変動を考慮した 1/100 確率規模の降雨量まで引き伸ばして、流出解析モデルにより流出量を算出し基本高水の検討 に用いることとした。

なお、アンサンブル予測降雨波形群のクラスター分割には、アンサンブル予測降雨を対象 に、流域全体の総雨量に対する各流域の寄与率を算出し、ユークリッド距離を指標としてウ ォード法によりクラスターに分類した。

	进业在日口	祓川橋上流域	気候変動後		祓川橋地点	クラスター
	六小十月日 六亜洪水群(■・蚕切洪水)	6時間雨量	1/100雨量	拡大率	ピーク流量	パターン
	土安洪水矸 (■・葉却洪水)	(mm/6h)	(mm/6h)		(m3/s)	分類
1	S34.09.26	179.8		1.429	1,490	2
2	S47.09.16	179.3		1.433	1,539	1
3	S50.08.22	151.3		1.699	1,881	2
4	S54.09.30	200.4		1.282	1,299	1
5	S62.10.16	125.2	257	2.053	1,364	1
6	H02.09.19	182.9	231	1.405	1,474	2
7	H10.09.22	139.8		1.838	1,416	1
8	H16.10.20	170.9		1.504	1,387	1
9	H17.07.02	151.4		1.697	2,039	1
10	H29.09.17	150.3		1.710	1,168	1
		武川桥上法は	与促亦動必		祓川 楂' 占	クラフター
	洪水年月日	祓川橋上流域 6時間雨量	気候変動後 1/100雨号	抗十亥	祓川橋地点 ピーク 流量	クラスター
アン	洪水年月日 サンブル予測降雨波形(将来実験)	 祓川橋上流域 6時間雨量 (mm / 6h) 	気候変動後 1/100雨量 (mm/(5h)	拡大率	祓川橋地点 ピーク流量 (… ³ (-)	クラスター パターン 八粒
アン	洪水年月日 サンブル予測降雨波形(将来実験)	祓川橋上流域 6時間雨量 (mm/6h) 070.0	気候変動後 1/100雨量 (mm/6h)	拡大率	祓川橋地点 ピーク流量 (m ³ /s)	クラスター パターン 分類
アン 1	洪水年月日 サンブル予測降雨波形(将来実験) HFB_2K_MR_m101_2079	 祓川橋上流域 6時間雨量 (mm/6h) 279.2 	気候変動後 1/100雨量 (mm/6h)	拡大率 0.920	祓川橋地点 ピーク流量 (m ³ /s) 1,411	クラスター パターン 分類 1
アン 1 2	洪水年月日 ・サンブル予測降雨波形(将来実験) HFB_2K_MR_m101_2079 HFB_2K_GF_m101_2071	 祓川橋上流域 6時間雨量 (mm/6h) 279.2 247.2 	気候変動後 1/100雨量 (mm/6h)	拡大率 0.920 1.040	祓川橋地点 ピーク流量 (m ³ /s) 1,411 1,387	クラスター パターン 分類 1 1
アン 1 2 3	洪水年月日 サンブル予測降雨波形(将来実験) HFB_2K_MR_m101_2079 HFB_2K_GF_m101_2071 HFB_2K_MP_m105_2083	祓川橋上流域 6時間雨量 (mm/6h) 279.2 247.2 242.8	気候変動後 1/100雨量 (mm/6h)	拡大率 0.920 1.040 1.058	祓川橋地点 ピーク流量 (m ³ /s) 1,411 1,387 1,734	クラスター パターン 分類 1 1 3
アン 1 2 3 4	洪水年月日 サンブル予測降雨波形(将来実験) HFB_2K_MR_m101_2079 HFB_2K_GF_m101_2071 HFB_2K_MP_m105_2083 HFB_2K_MR_m105_2077	祓川橋上流域 6時間雨量 (mm/6h) 279.2 247.2 242.8 242.6	気候変動後 1/100雨量 (mm/6h)	拡大率 0.920 1.040 1.058 1.059	 祓川橋地点 ピーク流量 (m³/s) 1,411 1,387 1,734 2,368 	クラスター パターン 分類 1 1 3 1
7 > 1 2 3 4 5	洪水年月日 ・サンブル予測降雨波形(将来実験) HFB_2K_MR_m101_2079 HFB_2K_GF_m101_2071 HFB_2K_MP_m105_2083 HFB_2K_MR_m105_2077 HFB_2K_MP_m105_2090	 祓川橋上流域 6時間雨量 (mm/6h) 279.2 247.2 247.2 242.8 242.6 242.3 	気候変動後 1/100雨量 (mm/6h) 257	拡大率 0.920 1.040 1.058 1.059 1.061	祓川橋地点 ピーク流量 (m ³ /s) 1,411 1,387 1,734 2,368 842	クラスター パターン 分類 1 1 3 1 2
アン 1 2 3 4 5 6	洪水年月日 サンブル予測降雨波形(将来実験) HFB_2K_MR_m101_2079 HFB_2K_GF_m101_2071 HFB_2K_MP_m105_2083 HFB_2K_MR_m105_2077 HFB_2K_MP_m105_2090 HFB_2K_MR_m105_2070	 祓川橋上流域 6時間雨量 (mm/6h) 279.2 247.2 242.8 242.6 242.3 239.8 	気候変動後 1/100雨量 (mm/6h) 257	拡大率 0.920 1.040 1.058 1.059 1.061 1.072	 減川橋地点 ピーク流量 (m³/s) 1,411 1,387 1,734 2,368 842 1,831 	クラスター パターン 分類 1 3 1 2 1
アン 1 2 3 4 5 6 7	洪水年月日 ・サンブル予測降雨波形(将来実験) HFB_2K_MR_m101_2079 HFB_2K_GF_m101_2071 HFB_2K_MP_m105_2083 HFB_2K_MR_m105_2077 HFB_2K_MP_m105_2090 HFB_2K_MR_m105_2070 HFB_2K_MI_m101_2086	 祓川橋上流域 6時間雨量 (mm/6h) 279.2 247.2 242.8 242.6 242.3 239.8 236.0 	気候変動後 1/100雨量 (mm/6h) 257	拡大率 0.920 1.040 1.058 1.059 1.061 1.072 1.089	 祓川橋地点 ピーク流量 (m³/s) 1,411 1,387 1,734 2,368 842 1,831 1,594 	クラスター パターン 分類 1 3 1 2 1 2
アン 1 2 3 4 5 6 7 8	洪水年月日 サンブル予測降雨波形(将来実験) HFB_2K_MR_m101_2079 HFB_2K_GF_m101_2071 HFB_2K_MP_m105_2083 HFB_2K_MR_m105_2077 HFB_2K_MP_m105_2090 HFB_2K_MR_m105_2070 HFB_2K_MI_m101_2086 HFB_2K_MR_m101_2090	 祓川橋上流域 6時間雨量 (mm/6h) 279.2 247.2 247.2 242.8 242.6 242.3 239.8 236.0 149.8 	気候変動後 1/100雨量 (mm/6h) 257	拡大率 0.920 1.040 1.058 1.059 1.061 1.072 1.089 1.716	 祓川橋地点 ピーク流量 (m³/s) 1,411 1,387 1,734 2,368 842 1,831 1,594 1,116 	クラスター パターン 分類 1 1 3 1 2 1 2 1 2 4

表 1.11.2 主要洪水のクラスター分析結果

: クラスター分析により主要洪水群に不足する降雨波形

図 1.11.3 土器川流域における将来実験アンサンブル予測降雨のクラスター分析結果

図 1.11.4 土器川流域におけるアンサンブル予測降雨の出現頻度

1.12 既往洪水からの検討

土器川水系で最も甚大な被害をもたらした大正元年(1912年)9月洪水では、基準地点祓 川橋におけるピーク流量(氾濫戻し後流量)は約1,580m³/s~1,700m³/sと推定される

1.13 総合的判断による基本高水のピーク流量の決定

今後想定される気候変動の影響による水災害リスクの増大を考慮し、気候変動シナリオ RCP2.6(2℃上昇相当)を想定した将来の降雨量変化倍率 1.1 倍(257mm/6h)を考慮して、 以下のような様々な手法による検討結果を総合的に判断した結果、雨量データによる確率か らの検討により算出された流量のうち最大となる流量を基本高水のピーク流量として決定し た。

その結果、土器川水系における基本高水のピーク流量は、図 1.13.1に示すとおり基準地点 祓川橋で 2,100m³/s と設定する。

基本高水のピーク流量ハイドログラフを図 1.13.2に示す。

図 1.13.1 基本高水の設定に係る総合的判断(基準地点祓川橋)

図 1.13.2 基本高水のピーク流量ハイドログラフ(平成17年7月洪水)

2. 高水処理計画

土器川の既定高水処理計画は、基準地点祓川橋の基本高水のピーク流量 1,700m³/s に対し て、基本高水のピーク流量の全量を河道に分担する計画となっており、土器川の河川改修は、 河口部の左右岸堤防の引堤計画としている。

今回、気候変動による降雨量への影響を踏まえ、新たに基準地点祓川橋における基本高水のピーク流量を見直した結果、既定計画 1,700m³/s を 2,100m³/s に変更する計画とした。

なお、河道と洪水調節施設等への配分の検討に用いる降雨波形は、計画規模の降雨量まで 実績降雨を引き伸ばすことにより得られた主要降雨波形群を用いた。

土器川においては、社会的影響、河川環境への影響、将来河道の維持を考慮すると、河道 で処理可能な流量は、基準地点祓川橋において 1,900m³/s、河口地点で 1,500m³/s である。こ のため、高水処理計画は、河道への配分流量を基準地点祓川橋で 1,900m³/s、常包地点で 1,600m³/s、河口部で 1,500m³/s とし、将来的な予測技術の向上も踏まえ、新たな洪水調節施設 の確保により対応することとした。

なお、新たな洪水調節施設については、新たな貯留・遊水機能の確保について概略検討し、 可能性があるとの結果が得られているが、流域の地形や土地利用状況、流域治水の視点等も 踏まえ、基準地点のみならず流域全体の治水安全度向上のため、具体的な施設計画等を今後、 技術的、社会的及び経済的な見地から検討し、総合的に判断した上で決定する。

3. 計画高水流量

土器川の計画高水流量は、基準地点祓川橋において 1,900m³/s とし、常包地点で 1,600m³/s、河口地点で 1,500m³/s とする。

4. 河道計画

河道計画は、以下の理由により現況の河道法線や縦断計画を尊重し、流下能力の不足する 区間においては、周辺の社会的影響や河川環境等を考慮しながら必要な河積(洪水を安全に 流下させるための断面)を確保する。

- ① 大臣管理区間の堤防は計画高水位に対し、概ね概成していること。
- ② 計画高水位を上げることは、決壊時における被害を増大させることになるため、沿川の 市街地状況を考慮すると避けるべきであること。
- ③ 既定計画の計画高水位に基づいて、鉄道橋を含む多数の橋梁や樋門等の構造物が完成していることや計画高水位を上げて堤内地での内水被害を助長することは避けるべきであること。

計画縦断図を図 5.1 に示すとともに、主要な地点における計画高水位及び概ねの川幅を 表 4.1 に示す。

河川名	地点名	※1河ロ又は合流点	計画高水位	計画上の川幅
		からの距離(km)	(T. P. m)	(m)
土器川	常包	18.6	138.26	80
	祓川橋	13. 2	82.93	210
	河口	0.0	^{**2} 3.17	250

表 4.1 主要な地点における計画高水位及び概ねの川幅一覧表

注) T. P. m: 東京湾中等潮位

※1:基点からの距離

※2:計画高潮位

【参考】 気候変動の影響検討(河口水位)

IPCC のレポートでは、2100 年までの平均海面水位の予測上昇範囲は、RCP2.6 (2℃上昇に 相当) で 0.29~0.59m であり、RCP2.6 シナリオの気候変動による水位上昇の平均値は 0.43m とされている。土器川では、流下能力の算定条件として、朔望平均満潮位に高潮による偏差、 密度差等を考慮して河口の出発水位を設定している。仮に海面水位が上昇(RCP2.6 シナリオ の平均値 43cm) したとしても、出発水位の値に影響がなく、計画高水流量を H.W.L.以下で 流下可能であることを確認した。

5. 河川管理施設等の整備の状況

土器川における河川管理施設等の整備の現状は以下のとおりである。

(1) 堤防

堤防整備の現状(令和7年(2025年)3月末時点)は、表5.1のとおりである。

	延 長 (km)
計画堤防断面	27.3 (69.3%)
今後整備が必要な区間	12.0 (30.5%)
堤防不必要区間	0.1 (0.2%)
計	39.4

表 5.1 堤防整備の現状

※延長は直轄管理区間の左右岸の計である。

(2) 洪水調節施設

完成施設 :なし

事業中施設 :なし

残りの必要容量: 概ね 5,300 千 m³

(3) 排水機場等

排水機場 :2箇所 (3m³/s)

- · 古子川救急排水機場
- ·赤山川救急排水機場

図 5.1 計画縦断図(土器川)