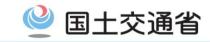
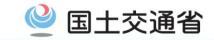

- loT時代の本格的な到来に対応するため、<u>低消費電力(長寿命)で広いカバーエリアを持</u> <u>つ低コストの無線システム</u>(LPWA(LowPowerWideArea))が求められており、様々な規格 が提案されている。
- 2016年6月、低消費電力等を実現したNB-IoT及びeMTC(LTE-M)の仕様を策定(3GPP)。
- ベンダー等において、サービス提供に向けた製品開発等の取組が加速。既存の携帯電話ネットワークを活用することで、迅速な面的サービス提供が可能。


資料:「情報通信審議会 情報通信技術分科会 新世代モバイル通信システム委員会(第3回)(2017年3月2日開催)委員会報告(案)」 (総務省)(http://www.soumu.go.jp/main_sosiki/joho_tsusin/policyreports/joho_tsusin/5th_generation/02kiban14_04000515.html) をもとに作成。

コストと消費電力を下げる方向で検討、開発が進められている。

資料:「情報通信審議会 情報通信技術分科会 新世代モバイル通信システム委員会(第3回)(2017年3月2日開催)委員会報告(案)」 (総務省)(http://www.soumu.go.jp/main_sosiki/joho_tsusin/policyreports/joho_tsusin/5th_generation/02kiban14_04000515.html) をもとに作成。


・ 2018年1月からLTE-Mが商用開始される等、今後も開発が進み、様々な サービスが展開される見込み。

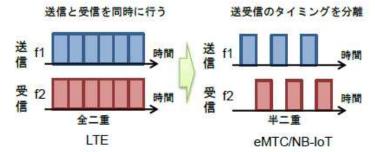
項目	特長	周波数	ピークレート (下り/上り)	サービス提供状況
	Cat-1 LTE標準化当初(Rel-8)からの通信 技術。高速通信向けLTEと比べてモ ジュールの低価格化、省電力が特長。	LTEバンド	10M∕5Mbps	・各キャリアにて全国エリアで提供中。 ・NTTドコモ Cat-1との組合わせた低 消費電力技術「eDRX(受信間隔変更 技術)」提供開始(2017年度末に全国 のLTEエリアで提供予定)*1
	LTE-M 高速LTEの一部周波数帯域のみを 利用することでモジュールの低価格 化、省電力化を実現する技術。		1M∕1Mbps	・ 2018年1月より商用開始 (KDDI「IoTコネクト LPWA、1回線あたり150円~(~1万回線、100KB/月))
	NB-IoT モジュールの低価格化、省電力化に 特化したLTEと共存できる新たな通 信方式。		29k ∕ 63kbps	・各キャリアにて実証試験を実施・今後、商用予定
非セルラーloT (専用ネット ワーク)	LoRa / SIGFOX 無線免許が不要な920MHz帯を使 用する低コスト・低消費電力技術。	アンライセンスバンド	250bps~50kbps 程度	・NTTドコモ、KDDI、ソフトバンク、京セラ(KCCS)等にて、各地でサービス提供中

資料: 「情報通信審議会 情報通信技術分科会 新世代モバイル通信システム委員会(第3回)(2017年3月2日開催)委員会報告(案)」(総務省) (http://www.soumu.go.jp/main sosiki/joho tsusin/policyreports/joho tsusin/5th generation/02kiban14 04000515.html)、通信キャリアのHP等を参考に作成

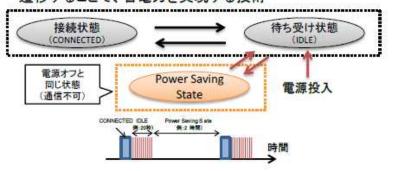
^{*1} NTTドコモ報道発表資料<2017年9月26日>


^{*2} KDDI報道発表資料<2017年11月16日>

・ 端末コストの削減、バッテリーの長寿命化、カバレッジ拡張の3つを実現することが求められている。NB-IoT等では以下に示す4つの主要技術を採用されている。


繰り返し送信技術の導入

信号を繰り返し送信することで、通信品質を向上させ、カバレッジを拡張する技術 (Repetition)


送受信タイミングの分離

送信と受信を同時に行わないことで、端末の構造を簡素化し、低コスト化を実現する技術

省電力モード(PSM)の追加

ネットワークへの接続性を維持しつつ、端末が一定時間、 (例:24時間)電源を落としたのと同じ状態(省電カモード)に 遷移することで、省電力を実現する技術

受信間隔の拡張

間欠的な信号受信により、受信していない間は一部の機能を停止させることで、消費電力を抑えるDRXの受信間隔を最大2.56秒(LTE)から最大43分(eMTC)/2.91時間(NB-IoT)に拡張し、更なる低消費電力を実現する技術(eDRX**) ** extended Discontinuous Reception

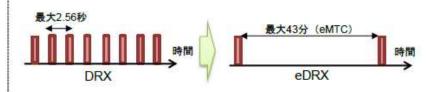


図2. 1-1 eMTC と NB-IoT に共通した主要技術

資料:「情報通信審議会 情報通信技術分科会 新世代モバイル通信システム委員会(第3回)(2017年3月2日開催)委員会報告(案)」 (総務省)(http://www.soumu.go.jp/main_sosiki/joho_tsusin/policyreports/joho_tsusin/5th_generation/02kiban14_04000515.html)より抜粋