In order to evaluate the degree of hierarchy of road network in a region, road use characteristics that express the functional hierarchy of the road network, and the road network conditions and regional urban structure necessary for its evaluation are examined. This research proposes a method for evaluating the degree of hierarchy using these methods.

1. Background and Objectives

Although the road network is becoming more organized in Japan, the average travel speed provided by road use is largely divided into expressways and other roads, and there are few roads that provide intermediate travel speeds. This causes problems such as the long time required for traveling between important centers, and the concept of a functional hierarchical road network is one of the keys to solve these problems. However, there is no method to evaluate the extent to which the road network in a region can be used in a functional hierarchy.

In this study, we propose the degree of hierarchy as an index to evaluate the properties of a functionally hierarchical road network. Then, a method for planning a functionally hierarchical road network using the degree of hierarchy is established.

2. Activities in Research Period

(1) Definition and representation of functional hierarchy of road network
(2) Quantification of road network conditions and regional urban structures
(3) Analysis of road use characteristics in functionally hierarchical road network
(4) A method for evaluating the functionally hierarchical road network using the road use characteristic indices
(5) Evaluation of road network using the degree of hierarchy

3. Study Results

(1) The degree of hierarchy of the road network can be expressed by the road use characteristic, which is assumed to change depending on the road network conditions and regional urban structure.

(2) In order to set indices for road network conditions used in evaluating the functional hierarchy of road network, we proposed a method for classifying road levels, a method for setting free speeds, and proposed indices for each level, such as free speeds. In addition, in order to set an index for the regional urban structure, we proposed a method of dividing the area to be analyzed into zones and setting up features and classifying road levels, a method for setting free speeds, and proposed indices for each level, such as free speeds. In addition, in order to set an index for the regional urban structure, we proposed a method of dividing the area to be analyzed into zones and setting up features and classifying road levels, a method for setting free speeds, and proposed indices for each level, such as free speeds.

(3) Indices related to travel speed and road use differentiation were extracted as the road use characteristic that represents the functional hierarchy of road network. Then, sensitivity analysis was done in terms of road network conditions and regional urban structure, and the intersecting points of the hierarchical utilization curves ($\theta, f(\theta)$) according to trip length was selected as a representative index (Fig.1).

(4) Based on the characteristics of the road network assumed from the

Table 1 Multiple liner regression analysis results

<table>
<thead>
<tr>
<th>Independent variables</th>
<th>θ</th>
<th>$f(\theta)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road Length Percentage Level A (R_A) (%)</td>
<td>-2.74 x 10^{-3}</td>
<td>-4.57 x 10^{-3}</td>
</tr>
<tr>
<td>Level B (R_B) (%)</td>
<td>-6.12 x 10^{-3}</td>
<td></td>
</tr>
<tr>
<td>Free Speed Level A (V_A [km/h])</td>
<td>1.82 x 10^{-3}</td>
<td></td>
</tr>
<tr>
<td>Level B (V_B [km/h])</td>
<td>-8.36 x 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>Level C (V_C [km/h])</td>
<td>2.16 x 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>Free Speed Difference between 2 Levels Level A (ΔV_A [km/h])</td>
<td>-5.14 x 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>Level B and C (ΔV_B [km/h])</td>
<td>-2.36 x 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>Function spacing (Level A) (d_A [km])</td>
<td>-1.43 x 10^{-4}</td>
<td></td>
</tr>
<tr>
<td>Distance of the weighted average of the distances of Level A between the generation and attraction points Level B (d_B [km])</td>
<td>1.29 x 10^{-4}</td>
<td>6.16 x 10^{-4}</td>
</tr>
<tr>
<td>Level C (d_C [km])</td>
<td>1.66 x 10^{-4}</td>
<td>3.49 x 10^{-4}</td>
</tr>
<tr>
<td>Residual Deviation of the distances of Level A from the generation and attraction points Level B (Δd_B [km])</td>
<td>-1.02 x 10^{-3}</td>
<td></td>
</tr>
<tr>
<td>Level C (Δd_C [km])</td>
<td>5.78 x 10^{-4}</td>
<td>4.98 x 10^{-4}</td>
</tr>
</tbody>
</table>

Summary

- Adjusted R Square: 0.713
- 0.752

Note: Variables not selected due to low t-value

Variables excluded due to the free speeds at each level of the hierarchy
superimposed hierarchical utilization curves, we proposed a method to evaluate the degree of hierarchy of the road network using objective indicators (θ, ϕ) determined from the intersecting points of the hierarchical utilization curves (Fig.2). Paired Comparison Questionnaire Surveys were conducted on the functional hierarchy of road networks for experts involved in the study of functionally hierarchical road networks, and it was confirmed that the order of the obtained subjective evaluation and the order of the evaluation by objective indices were consistent at the evaluation category level of the degree of hierarchy.

(5) In order to enable practitioners to easily use the evaluation method for the degree of hierarchy without having to conduct route searches, an estimation model for road use characteristic indices was developed (Table.1). Then, we proposed a method for planning a functionally hierarchical road network (Fig.3). Based on the results, the degree of hierarchy in the four Tokai regions was evaluated (Fig.4, 5, and 6).

4. Papers for Presentation and Publication

5. Study Development and Future Works

Applicability of the study results

- By organizing data on road network conditions and regional urban structure in any region, it is possible to evaluate the degree of hierarchy in the present situation and at the time of implementation of proposed measures.

Future works

- Further study on the explanatory variables that express the continuity of road network,
- A study of how to set regional features according to the type of center facility,
- A study of evaluation method of the degree of functional hierarchy for urban road network (e.g., consideration of access functions, consideration of users other than cars, etc).

6. Contribution to the Quality Improvement of Road Policy

- Since the application to practice has been in mind from the beginning of the project, the proposed evaluation method is designed to be easily used by practitioners based on the information available to them,
- By this method, it becomes possible to make policy judgements on road networks from the viewpoint of functional hierarchy.

7. References, Websites, etc.

N.A.