Development Direction and Perspectives on Probe-car

- 1. Progressing ITS Effort of Japan
- 2. Current Status and Challenges of Expressway-bus Location System
- 3. Expressway-bus Location System Deployment Potentials with DSRC
- 4. Approach to Utilize Data
- 5. Concluding Remarks

Yuichi Odawara

Deputy Director of ITS Policy and Program Office, Road Traffic Control Division of Road Bureau Ministry of Land, Infrastructure and Transport

Introduction

What is 'Smartway'?

Reverse the negative legacy of road transport

Realize well-off & vital communities

Provide better mobility for the elderly

Enhanced the business milieu

1. Progressing ITS Effort of Japan

(1) In-car navigation and VICS

The marketed in-car navigation units and VICS are steadily increasing

As of 2005, 18 million in-car navigation units and 12 million VICS units are in

2

1. Progressing ITS Effort of Japan

(2) ETC

- ETC on the increase
 - About 10% of vehicles across the country have installed OBUs
 - About 51% of vehicles on expressways pass through ETC transaction

1. Progressing ITS Effort of Japan

(3) ETC impact

- ETC pervasiveness clearly impacts tie-up alleviation
 - Approx. 90% of tie-ups at tollgate section on Metropolitan expressways have been eliminated

1000ton

0

CO2 emissions (at Kawaguchi tollgate of JH) are dissipating

Apr., 2002 Apr., 2003 Apr., 2004 Apr., 2005

A shift of tie-up at main lane tollgate and ETC transaction ratio on Metropolitan expressways

Kawaguchi tollgate with no tie-up

A shift of CO2 emissions at Kawaguchi tollgate 4

- Phased introduction of BLS along expressways from 2005 in order to assist public transit with ITS
- Introduction to BLS deployment with a cross-sectional platform

(1) A shift of BLS operators

- As of now, approx. 500 operators exist and more are being added year on year
- Of these operators, about 80 have installed BLS
- The advent of BLS of GPS locating type was in 1999
- A market model of the GPS type BLS followed shortly after

Figure: Shift of bus operators and BLS introduced operators

Figure: Expressway bus operators and BLS Introduced operators

2. Current Status and Challenges of Expressway BLS (2) Mileage of expressway bus

- Mileage of expressway bus: about 6,900km (4,300mile)
 - 95% of expressway total mileage (about 7,200km)
- BLS operational mileage: about 2,200km (1,400mile)
 - 31% of expressway total mileage

Chart: expressway bus operational mileage and BLS operational mileage

	Expressway	Expressway bus course	BLS operational mileage
Mileage	7,200km	6,900km	2,200km
Ratio against expressway total mileage	-	approx. 95%	Approx. 31%

legend

Bus location sys operational expressway

Expressway bus available expressway

Expressway bus unavailable expressway

Chart: expressway bus course and BLS operational course 7

Data was searched by MLIT in Oct. 2004

(3) An approach to gather location data of expressway bus operations

a) with GPS

b) with roadside sensor

c) by pushing a button

d) with door operation timing

(4) Communication cost to gather location data

- Monthly cost is 5,480 yen (approx. \$48) per vehicle
- Cost is contingent on transferring frequency
- A challenge for pervasiveness is the cost reduction

3. Expressway BLS Development with DSRC

(1) System configuration

A running cost reduction is possible for BLS with DSRC

3. Expressway BLS Development with DSRC (2) Pilot test

- •Pilot test starts in fiscal 2005 along two routes
- DSRC beacon placement and ITS OBU development is required

Kanto area Route: from YCAT to Haneda airport Metropolitan expressway Mileage: 23 km (14 mile) 6号向島線 1号上野線 中央環状新宿線 都心環状線 八重洲線 中央環状品川線 神奈川3号狩場線 湾岸線(神奈川)

(1) Measures

Anticipated enhancement of works in each area

Chart: measures to utilize probe data by expressway bus (draft)

	Road administration	Bus operator	
Stored data	 data for outcome rate calculation performance monitoring on expressway traffic demand forecast (identify LOS of inter-cities) 	 use for operation control Use for personnel management 	
<i>i</i> a	•use for road works management•use for detour guidance•use for optimal toll charge system		
Real-time data	•use for road control and management	•use for enhanced user service •use for operation control	

(2) Utilizing bus operations to isolate problems along expressways

- Allows a problematic section to be isolated in terms of expressway bus operations
- Allows a priority decision to be made on road planning or works, as well as performance monitoring after the road works

Illustration: operation section composition ratio of access, expressway, and egress sections

(3) Identify the Level of service (LOS)

- Identifying LOS in each travel mode is of consequence to predict traffic demand
 - Airplane, rail are primarily on schedule →identify of LOS is not difficult
 - Expressway bus: a delay due to tie-ups → identify of LOS is difficult
- History data of bus operations enables LOS to be precisely identified

Figure: Planning flow

(4) Assistance for service vehicle patrolling

- A road operator conducts service vehicle patrolling
- A expressway bus driver will inform of any anomaly
 - their actions help enhance patrolling efficiency along expressways

Figure: An expressway bus driver provides assistance for service vehicle patrolling 15

5. Concluding remarks

- Wraps on progressive status of Smartway
 - Pervasive VICS · ETC operations
- Proposal of bus location system with DSRC
 - System configuration
 - Pilot test courses in community
- Proposal on approach to BLS data use

Future Development

- Diversified ITS services are to be operational in 2007
- As of today, of the 200 thousand kms of VICS in service, road traffic information is available over 30 thousand kms
- Enhancement for 'quantitative and qualitative sufficiency' will be achieved, responding to the user's need
- Quantitative sufficiency

Current

Offering Road traffic information along primary routes

Future

Offering more precise road traffic information on more routes

Pilot test on safe driving assistance service

新宿出入口

西参道口

② 中央環状製

○9 深川瀬

上野線〇 〇 6 向島線

○Ⅲ台場線

 In-car navigation provides tieup conditions over a bend section

 A beep and graphic information on-screen make a driver aware in order to prevent rear-end collisions

都心環状線

11羽田線ご

