技術番号	BR020008								
技術名	コンクリート構造物変状	部検知シス	テム「BLUE DOC	TORJ	開発者名	4 リン	式会社オン [・] グ	√ガエン [・]	ジニア
試験日	令和1年 10 月 17 日	天候	晴れ	気温	. 17	°C	風速	0	m/s
試験場所	試験場所 某橋梁(福岡県)								
カタログ分類	非破壊検査技術	カタログ	検出項目 うき	÷		試験	区分標	準試験	

試験で確認する 計測精度 カタログ項目

対象構造物の概要

試験方法(手順)

 ① 30,50,80mm深さの変状を模した供試体を準備。(写真-1)

 ② 各深度ごとに打撃・反射波計測が出来るようにコースを準備。(写真-2)

 ③ 評価用移動装置に設置、各測定点に移動させて測定(写真-3)

 ④

技術番号

BR020008

写真-1

写真-2

写真-3

計測結果の比較

30, 50, 80mmの模擬変状部および300mmの一般部で打撃および反射波の受信を行った。この時の波形を観察することにより、各深度での検出性能を確認した。

電圧レンジを倍にして表示

各深度において、明確な反射信号強度の違いが確認でて、30,50,80mm深さの変状部を検出できることを確認した。

技術番号	BR020008								
技術名	コンクリート構造物変状	部検知シス	テム「BLUE DOO	CTOR」	開発者名	株プリン	式会社オン ・グ	/ガエン シ	ジニア
試験日	令和1年 10 月 17 日	天候	晴れ	気温	17	°C	風速	0	m/s
試験場所	試験場所福岡県								
カタログ分類	非破壊検査技術	カタログ	検出項目 うき	ŧ		試験	区分標	準試験	

試験で確認する 計測精度 カタログ項目

対象構造物の概要

試験	試験方法(手順)			BR020008			
1	1 30, 50, 80mm深さの変状を模した供試体を準備。(写真-1)						
2	② 各深度ごとに打撃・反射波計測が出来るようにコースを準備。(写真-2)						
3	評価用移動装置に設置、各測定点に移動させて静止状態および移動状態で測定(写真-3)						

写真-1

写真−2

写真-3

30,50,80mmの模擬変状部で打撃および反射波の受信を行った。計測を静止状態と移動状態の二つの状態で行い、それぞれの状態で各深度での検出性能を確認した。

当該技術の結果

静止状態、移動状態共に、各深度において明確な反射信号強度の違いが確認でて、30,50,80mm深さの変状部を検出できることを確認した。

技術番号	BR020008								
技術名	コンクリート構造物変状	部検知シス	、テム「BLUE DOC	TORJ	開発者名	株式リン	式会社オン ⁄グ	グガエン :	ジニア
試験日	令和2年 2 月 5 日	天候	晴れ	気温	14	°C	風速	0	m/s
試験場所	施工技術総合研究所								
カタログ分類	非破壊検査技術	カタログ	検出項目 うき	\$		試験	区分標	準試験	

試験で確認する カタログ項目

計測精度

対象構造物の概要

最小かぶり30mm

最小かぶり50mm

1000mm

最小かぶり70mm

試験	方法(手順)	技術番号	BR020008			
1	キャリブレーションを行い、計測の準備を行う。(写真-1)					
2	② 打音装置をの車輪すべてが対象箇所に押しつけ、車輪方向にむけて移動、検査。(写真-2)					
3	記録者が所持しているコントローラのLEDの点灯を把握する。(写真-3)					
⑤	コントローラのLEDが2個以上点灯した箇所にチョーキングを行う。(写真-4)					

模擬空洞型枠

うきの総個所数 12箇所

模擬空洞型枠

供試体③

当該技術の結果

供試体①

供試体②

供試体③

計画結果の比較

供試体①

技術番号	BR020008								
技術名	コンクリート構造物変状	部検知シス	テム「BLUE DOO	TORJ	開発者名	株式リン		ンガエン	ジニア
試験日	平成30年 11 月 6,7 日	天候	晴れ	気温	17	°C	風速	0	m/s
試験場所	試験場所 某橋梁(石川県)								
カタログ分類	非破壊検査技術	カタログ	検出項目 うき	<u>±</u>		試験[区分 棏	票準試験	

.._.

試験で確認する カタログ項目

計測精度

対象構造物の概要

一般国道8号 不明

一般国道8号 10号道路BOX下

試験	方法(手順)		技術番号	BR020008		
1	キャリブレーシ	ソョンを行い、計測の準備を行う。				
2	② 打音装置をの車輪すべてが対象箇所に押しつけ、車輪方向にむけて移動、検査。(写真-2、3)					
3	記録者が所持					

写真-1

⑤ コントローラのLEDが2個以上点灯した箇所にチョーキングを行う。

写真−3

写真−2

計測結果の比較

当該技術の結果

4. 計測性能:計測装置:計測精度

実施県	実施道路	点検日	検出率(%)	ヒット率(%)	検査面積㎡
石川県	一般国道8号 不明	2018/11/6	5/5=100	5/11=45	129.19
石川県	一般国祖8号 10号道路BOX 下	2018/11/7	1/1=100	1/2=50	177.66
2現場合計	_	_	6/6=100	6/13=40	306.85

技術番号	BR020008								
技術名	コンクリート構造物変状	部検知シス	、テム「BLUE DOC	TORJ	開発者名	3 (株	:)オンガエ	ンジニア	リング
試験日	令和2年 1 月 31 日	天候	晴れ	気温	7.2	°C	風速	1	m/s
試験場所	試験場所								
カタログ分類	非破壊検査技術	カタログ	検出項目 うき	<u> </u>		試験	区分 現	場試験	

試験で確認する カタログ項目

動作確認 (精度以外)

試験方法(手順)	技術番号	BR020008
_	 	

- ① 機材搬入(写真-1)(写真-2:コントローラー、写真-3:電源、写真-4:ハンマー・センサー 等)
- ② 計測作業(床版部)(写真-5)
- ③ 計測作業(主桁ウエブ部 狭隘部)(写真-6)
- ④ 計測結果(写真-7:LED点灯1箇 うきなし、写真-8:LED点灯2個以上 うき有り)
- ⑤ 計測でうきの箇所をチョーキングし、写真撮影やスッケチし、後日、損傷図を作成する。

技術番号	BR020008								
技術名	コンクリート構造物変状	部検知シス	ステム「BLUE DOC	TORJ	開発者	名	式会社オン・グ	⁄ガエン [・]	ジニア
試験日	令和3年 3 月 25 日	天候	晴れ	気温	18.5	5 ℃	風速	3.5	m/s
試験場所	福島ロボットテストフィー	ルド							
カタログ分類	非破壊検査技術	カタログ	検出項目 うき	ŧ		試験	区分標	準試験	

試験で確認する カタログ項目

計測精度

対象構造物の概要

※検証試験体

D1:かぶり30mm、寸法1050×1050mm

写真-2 検証試験体

試験	試験方法(手順) 技術番号 BR020008								
1	① 機器の搬入(写真-3)								
2	② キャリブレーションを行い、計測の準備をする。(写真-4)								
3	打音装置の車	■輪を模擬供試体表面に押し付け、計測する。(写真-5)							
4	コントローラのLEDが2コ以上点灯した箇所にチョーキングする。(写真-5、6)								
⑤	後日、取得したデータよりうきの箇所を検出する。								

比較対象を得るため、 立会者による計測機器の設置状況

※検証供試体

うきの総箇所数:9箇所

※計測結果

D1

D1 うきの大きさ (X軸×Y軸)

1	130 × 100	mm
2	150×150	mm
3	110×145	mm
4	65×70	mm
(5)	210×140	mm
6	60×65	mm
7	90×80	mm

BR020008

※検出率、的中率

検出率=正解個数のうち技術で検出できた個数/打音異常の正解個数 的中率=当該技術で検出した打音異常のうち正解個数/当該技術で検出した個数(誤検出数含む)

D1

<u> </u>					
真値番号	打音の正解個数	計測値番号	検出正解個数	的中正解個数	備考
1	1	2	1	1	
2	1	1	1	1	
3	1	_	0	0	
4	1	4	1	1	
⑤	1	_	0	0	
6	1	3	1	1	
7	1	5	1	1	
8	1	6	1	1	
9	1	7	1	1	
計	9		7	7	

検出率= 7箇所/9箇所=0.78

的中率= 7箇所/7箇所=1.00

技術番号	BR020008								
技術名	コンクリート構造物変状	部検知シス	、テム「BLUE DOC	TORJ	開発者	名りン	式会社オン ⁄グ	/ガエン	ジニア
試験日	令和3年 3 月 25 日	天候	晴れ	気温	l 18.	5 °C	風速	3.5	m/s
試験場所	福島ロボットテストフィー	ルド							
カタログ分類	非破壊検査技術	カタログ	検出項目 うき	<u> </u>		試験	区分 現	場試験	

試験で確認する カタログ項目

動作確認(精度以外)

試験	方法(手順)	法(手順) 技術番号 BR020008							
1	機器の搬入(写真-3)								
2	キャリブレーションを行い、計測の準備をする。(写真-4)								
3	打音装置の車輪を模擬供試体表面に押し付け、計測する。(写真-5)								
4	コントローラのLEDが2コ以上点灯した箇所にチョーキングする。(写真-5、6)								
⑤	後日、取得したデータよりうきの箇所を検出する。								

比較対象を得るため、 立会者による計測機器の設置状況

平面図s-1:50(S-1:100,A3)

計測箇所数 : 2カ所 うき:100mm四角

変状検出数 : 2カ所

技術番号	BR020009							
技術名	最大6mの距離からプラ 性波成分から内部空洞			の弾	開発者名	A 株	式会社アノ	レファプロダク
試験日	令和2年 3 月 3 日	天候	晴れ	気温	22	°C	風速	0 m/s
試験場所	施工技術総合研究所				·			
カタログ分類	非破壊検査技術	カタログ	検出項目 うき	<u>\$</u>		試験	区分標	準試験

試験で確認する 計測精度

対象構造物の概要

最小かぶり30mm

最小かぶり50mm

最小かぶり70mm

試験	方法(手順)	技術番号	BR020009
1	計測の準備を行う。(写真-1)		
2	BB弾を補充。(写真−2)		
3	レーザーでBB弾発射位置を照射し、BB弾を発射。(写真-3)距離:4m		
5	PC画面より弾性波データの確認を行う。(写真-4)		

供試体③

技術番号	BR020009								
技術名	最大6mの距離からプラ 性波成分から内部空洞で			音の弾	開発	者名 ト	式会社アル	レファプロ	1ダク
試験日	令和5年 12 月 6 日	天候	雨	気温	1	4.6 °C	風速	5.2	m/s
試験場所	福島ロボットテストフィー	ルド							
カタログ分類	画像計測技術	カタログ	検出項目 ひ	びわれ		試験	区分 現	場試験	

試験で確認する カタログ項目

動作確認(精度以外)

対象構造物の概要

技術番号 試験方法(手順) BR020009 1 機器の搬入(ライフル、BB弾、集音機、PC、レーザー、三脚)(写真-2)

- 2 発射状況:A2橋台正面(射程距離:6m、写真-3)
- 発射状況:PCホロー桁橋下面(射程距離:5m、写真-4) (3)
- 4 発射状況:P1橋脚柱部正面(射程距離:6m、写真-5)
- **(5**) ②~④の発射状況から反射音からうきを検出する。

開発者による計測機器の設置状況

比較対象を得るため、 立会者による計測機器の設置状況

写真-6

写真-7

写真−8

※A2竪壁正面(起点側))(写真-6)、PCホロー桁下面(写真-7)、P1橋脚正面(起点側))各箇所のうきを検出する

技術番号	BR020010							
技術名	床版上面の損傷箇所判	定システム	4		開発者名		・レキ株式会 日本コンサル	è社 レタント株式会社
試験日	某橋梁 H27.9.15 九州自動車道 R1.9.19	天候	晴れ 晴れ	気温	30.0°C 23.2°C		風速	2.9m/s 2.9m/s
試験場所	某橋梁(新潟県)、九州日	自動車道ノ	\代IC付近					
カタログ分類	非破壊検査技術	カタログ	検出項目 床間	反上面の土石 反上面の滞活 を下面の剥削	水	試験	区分 -	-

試験で確認する カタログ項目

動作確認

対象構造物の概要

1 はじめに

本書は、床版上面の損傷箇所判定システムの下記項目についての検証結果を報告するものである。

表 1-1 検証項目

検証項目	内容
計測精度	検出率および的中率。
計測速度	高速自動車道路(制限速度 80km/h)で測定が可能か。

2 検証箇所の概要

2-1 明神第3橋

(1) 概要

1) 橋梁名:明神第3橋 2) 橋 長:31.93m

3) 形 式:単純合成飯桁橋 4) 供 用:1966年供用開始 5) 路線名:一般国道7号 6) 場 所:新潟県村上市

7) 管理者:羽越河川国道事務所 村上国道維持出張所

図 2-1 明神第3橋

(2) 測定日

2015年9月15日 午前11時

2-2 九州自動車道 八代 IC 付近

(1) 概要

1) 橋梁名:九州自動車道 八代 IC 付近 2) 場 所: KP213.3310~KP212.9705=360.5m

3) 車 線:上り追越 4) その他:制限速度80km/h

図 2-2 八代 IC 付近

(2) 測定日

2019年9月19日 午後13時

3 計測精度の検証

(1) 対象橋梁

明神第3橋

(2) 確認内容

床版上面の損傷面積

実際の損傷 (アスファルト舗装を剥がした後の目視および打音調査の結果。) を正解としての検出率と的中率を下式で算出し評価を行った。 なお、1 ピクセルは延長 7.5cm×幅7.5cm に相当する。

検出率(%)= 検出できたピクセル数 損傷(または健全)の正解ピクセル数

的中率(%)= 検出した損傷(または健全)のうち正解ピクセル数 技術で検出したピクセル数 (誤検出を含む)

なお、目視・打音調査の結果は「橋梁の床版非破壊調査の手引きについて 国土交通省 北陸技術事務所 平成 28 年 7 月」から引用した。

(3) 検証結果

表 3-1、図 31 および図 32 に検証結果を示す。

分類 実際の状態 検出ピクセル数 正解ピクセル数 検出率 健全(グループ1) 異常なし 20,099 28,645 70.2% 70.2% グループ2 うき、鉄筋露出、表面の凹 1,204 2,167 55.6% 損傷 89.4% 1,890 グループ3 土砂化、土砂化鉄筋露出 2,437 77.6% 的中率 分類 実際の状態 検出ピクセル数 正解ピクセル数 健全(グループ1) 異常なし 20,589 20,099 97.6% 97.6% グループ2 うき、鉄筋露出、表面の凹 13.4% 8,978 1,204 32.5% 3,682 1,890 グループ3 土砂化、土砂化鉄筋露出 51.3%

表 3-1 本技術の検出率・的中率

※1ピクセルは延長7.5cm×幅7.5cm)

※検証橋梁は1橋、面積は187㎡。

※推定される損傷

グループ2:乾燥状態の浅い土砂化、乾燥状態の舗装下面剥離、上鉄筋配置面の水平ひび割れが進行した乾燥状態の 浅い土砂化

グループ3:滞水状態の土砂化、乾燥状態の深い土砂化、滞水状態の舗装下面剥離、滞水状態の水平ひび割れ、上鉄筋配置面の水平ひび割れから浮きへ移行したかぶり部の格子状ひび割れ

図 3-1 目視・打音調査の結果

図 3-2 本技術による結果

計測速度の検証 技術番号

BR020010

4 計測速度の検証

(1) 対象橋梁

九州自動車道 八代 IC 付近

(2) 確認内容

高速道路(制限速度 80km/h)で測定が可能か。性能カタログ値 80 km/h 以内。

(3) 検証結果

下図の通りコンター画像を取得できたため、高速道路で測定可能である。

計測時刻(GPS より)"2019-09-19T13:50:38"~"2019-09-19T13:51:31"

計測時間:53 秒 計測距離:1,050.383 m

計測速度:71km/h(当日の一般車両の交通の流れ)

図 4-1 コンター画像(縦断図)

技術番号	BR020010								
技術名	技術名 床版上面の損傷箇所判定システム 開発者名 ニチレキ株式会社 大日本コンサルタント株式会社							会社	
試験日	令和2年 1 月 30 日	天候	晴れ	気温	13.1	°C	風速	5.3	m/s
試験場所	場所 実橋								
カタログ分類	非破壊検査技術	カタログ	検出項目	末版上面の土 末版上面の滞 末版上面の滞 補装下面の录	水	試験	区分現	場試験	

試験で確認する カタログ項目

動作確認(精度以外)

対象構造物の概要

手前が起点側

※床版は鋼板接着で補修されている。

対象部位:床版上面の損傷を確認する。

試験方法(手順) 技術番号 BR020010

① 測定車(電磁波レーダを搭載した車両)を指定の駐車場で作動確認をする。

- ② 電磁波レーダ(写真-1)を横にスライドした状態(写真-2、写真-3)とその確認モニータ(写真-4)
- ③ 路面撮影用カメラ(写真-5)
- ④ 測定車の走行状況(写真-6)(橋梁を3往復)
- ⑤ 測定データを計測車内のPCに送信し、後日、データを画像処理等で損傷の有無を確認する。

開発者による計測機器の設置状況

比較対象を得るため、 立会者による計測機器の設置状況

※測定データから損傷の有無を確認する。

(床版は鋼板接着で補修されている。)

計測結果の比較 技術番号 BR020010

1.2. 原理

1.2.1. 原理

(1) 電磁波の発信と反射信号の受信

橋梁の路面下はアスファルト舗装、コンクリート、鉄筋の 3 種類の電気的特性の異なる材料 から構成され、健全な場合は、それらは密着している。

電磁波レーダから路面に向かって発信した電磁波は、空気とアスファルト舗装の境界、アスファルト舗装とコンクリートの境界、コンクリートと鉄筋の境界において反射し、電磁波レーダに反射信号として受信される。

(2) アスファルト舗装、RC 床版上面が健全な場合の電磁波の反射信号

アスファルト舗装、RC 床版上面が健全(材料レベルでの損傷がなく両者が密着)な場合は、アスファルト舗装とコンクリートに電気的特性に範囲があるものの、それぞれの材料の境界における電磁波の反射が面的に一様(図-1.2.1)と言え、RC 床版上面の損傷を把握する際の基準となる。

図-1.2.1 健全な場合の反射信号

(3) 材料の電気的特性の変化及び新たな物質の付与による、反射信号の強度や透過性の変化

一方、RC 床版上面の土砂化や滞水が生じていると、言い換えると材料の電気的特性の変化や 新たな物質が加えられ、反射信号の強度や透過性が変化すると、健全な場合と異なる反射信号を 受信し、RC 床版上面に損傷が生じている可能性がある範囲として検出される。

ただし、使用する電磁波レーダの波長は、想定される損傷の厚さに比較して長く、損傷を直接 分解することは困難であるため、受信した電磁波の反射信号と基準となる健全な場合の反射信号 を比較して損傷の可能性を評価し、相違点の特徴により損傷の種類を分類する。

図-1.2.2 コンクリートが土砂化して乾燥(電気的特性の変化)の反射信号

図-1.2.3 RC 床版上面の滞水 (新たな物質の付与、透過性の変化)の反射信号

1 はじめに

本書は、床版上面の損傷箇所判定システムの下記項目について検証結果および本技術によるアウトプットを報告するものである。

表 1-1 検証項目

	狄 → 大陆
検証項目	内容
計測レンジ	路面から深さ 1.50m までデータが取得できるか。(比誘電率 5、発信受
	信の時間間隔 25ns の場合)
検出性能	コンター画像(縦断図)において、路面、鉄筋コンクリート床版上面、
7	鉄筋の反射強度のコンターが検出できるか。
分解能	分解能時間: 0.34ns (周波数 3GHz)
The state of the s	深さ方向の反射強度取得ピッチ:1.0cm
	延長方向の反射強度取得ピッチ:7.5cm
	幅員方向の反射強度取得ピッチ:7.5cm
計測速度	一般道路(制限速度 50km/h) で測定が可能か。
位置精度	延長方向±0.5m以内、幅員方向±0.5m以内であること。

2 検証箇所の概要

(1) 概要

1) 橋梁名:

2) 橋 長:62.7m

3) 形 式:3径間連続鈑桁橋 4) 供 用:1965年供用開始 5) 路線名:一般国道20号

6) 場 所:山梨県北杜市白白州町鳥原

7) 管理者:甲府河川国道事務所 甲府出張所

図 2-1

(2) 測定日

2020年1月30日 午前9時~午前11時

(3) 天候

(前々日) 2020年1月28日は降雪。

(前 日) 2020年1月29日0:00~3:59 5.5mmの降水、

2020年1月29日4:00~23:59 降水なし

(当 日) 2020年1月30日0:00~9:00 降水なし

2020年1月30日9:00~11:00 降水なし(降雨から24時間経過)、測定時間帯

3 計測レンジの検証

(1) 確認内容

最大深度:路面からの深さ1.5m (比誘電率5、発信受信の時間間隔25ns)

(2) 検証結果

検証結果:路面からの探査深度:1.533 (m) であることが確認された。

図 3-1 コンター画像(縦断図)の表示画面

4 検出性能の検証

(1) 確認内容

コンター画像(縦断図)において、路面、鉄筋コンクリート床版上面、鉄筋の反射強度の コンターが検出できるか。

(2) 検証結果

コンター画像(縦断図)において、各材質の反射強度のコンターが検出できた。

図 4-1 コンター画像(縦断図)の表示画面

5 分解能の検証

5-1 分解能時間の検証

(1) 確認内容

分解能時間 0.34 ns $(2.9 \text{GHz} \sim 3.0 \text{GHz}$ 程度の電磁波が発信されているかの確認) 分解能時間は、 $3D \cdot \text{RADAR}$ 社 (本技術で使用する電磁波レーダ)社が 0.34 ns であると公表している。 これは、電磁波の周波数が $2.9 \text{GHz} \sim 3.0 \text{GHz}$ の周期を示している。検証は計測において、電磁波レーダが $2.9 \text{GHz} \sim 3.0 \text{GHz}$ 程度の電磁波を受信していることを確認した。

図 5-1 3D-RADAR 社(ノルウェー)製、型番:エアカップル型 DX アンテナシリーズ

(2) 検証結果

計測時において $3.03\,\mathrm{GHz}$ の電磁波が受信されている、分解能時間は $0.34\,\mathrm{ns}$ であることが確認された。

Radar Data		
Domain	Frequency	
Minimum Frequency	30.0 MHz	
Maximum Frequency	3030,0 MHz	
Frequency Step	20.0 MHz	
Time Window	25 ns	
Dwell Time	1.500 us	
Trigger		
Mode	Distance	
Primary DMI Unit	Channel A	
Original Sampling Interval	74.0 mm	
Current Sampling Interval	74.0 mm	
Survey		
Start Time	2020/01/30 8:59:51	

図 5-2 計測時の周波数表示画面

5-2 反射強度の取得ピッチの検証

(1) 確認内容

反射強度の取得ピッチ

データ取得ピッチは、計測範囲をデータ取得個数で割ることで算出する。なお、比誘電率は5に設定した。

(2) 検証結果

以下表のとおり、性能カタログ値※を満足する結果となった。

表 5-1 データ取得ピッチ

計測 方向	計測範囲 (m)	データ取得数 (個)	反射強度の 取得ピッチ (cm)	性能カタログ値 (cm)
深さ方向	1.533	Z 方向: 229	0.67	1.0cm
延長方向	62.7	X 方向:848	7.39	7.5cm
幅員方向	6.512	Y 方向:89	7.32	7.5cm

※性能カタログ値は社内基準値になる

6 計測速度の検証

(1) 確認内容

一般道路(制限速度 50km/h)で測定が可能か。性能カタログ値 80 km/h 以内。

(2) 検証結果

下図の通りコンター画像を取得できたため、一般車両の交通の流れで測定可能である。

計測時刻(GPS より)"2020-01-30T09:24:37"~"2020-01-30T09:24:50"

計測時間:13秒 計測距離:117.722m

計測速度:33km/h(当日の一般車両の交通の流れ)

図 6-1 コンター画像(平面図)

7 位置精度の検証

(1) 検証位置

延長方向はA1、P1、P2、A2の位置を、幅員方向は鋼桁位置を確認対象とした。

(2) 延長方向の検証

確認内容:測定時に取得した緯度経度から算出した対象位置(追加距離)が実際の位置

に対し、±0.5m以内であるか。

35.8381118479

検証結果:以下のとおり、性能カタログ値※を満足する結果となった。

138.3037414009

計測結果 真の位置(m) 性能カタログ値 位置 誤差(m) 緯度 追加距離(m) 追加距離(m) (m) 経度 35.8375739710 138.3039560315 0.000 A1 0.000 P1 35.8376875087 138.3039107264 13.246 13.350 -0.104 ± 0.5 P2 35.8379970417 138.3037872126 49.357 49.350 0.007

62.751

表 7-1 位置精度(延長方向)の検証結果

※性能カタログ値は社内基準値になる

62.700

図 7-2 コンター画像(平面図)

(3) 幅員方向の延長

確認内容:コンター画像から得た対象位置が、実際の位置に対し±0.5m以内であるか。

検証結果:以下のとおり、性能力タログ値※を満足する結果となった。

表 7-2 位置精度(幅員方向)の検証結果

位置	計測統	吉果	真の位置(m)	誤差(m)	性能カタログ値
]立[6]	基準	位置(m)	具の位置(m)	設定(III)	(m)
下り側の鋼桁	センターから	0.888	1.000	-0.112	±0.5
上り側の鋼桁	センターから	1.036	1.000	0.036	±0.5

※性能カタログ値は社内基準値になる

図 7-3 コンター画像(平面図)

8 アウトプット

床版上面の損傷箇所の検出結果を示したデータシートを示す。

床版上面の損傷箇所の判定結果(新流川橋)

平面図 路面

凡例	推定要因
	グループ1:健全
	グループ2:乾燥状態の浅い土砂化、乾燥状態の舗装下面剥離など
	グループ3:滞水状態の土砂化、乾燥状態の深い土砂化など

平面図 グループ2

平面図 グループ3

損傷面積集計表

番号	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	H II.—¬°2
面積(m²)	0.05	0.12	0.02	1.42	1.09	0.04	0.27	0.04	1.32	0.22	1.57	1.98	21.98	20.21	0.03	35.81	0.99	0.01	0.54	0.84	7.12	0.04	3.70	0.43	0.08	グルー/2 <u> </u>
番号	26	27	28	29	30	31	32	33																		百計山惧(III)
面積(m³)	0.02	1.41	0.98	0.01	0.07	34.26	1.90	32.53																		171.08

番号	- 1	2	3	4	5	6	1	8	9	10	- 11	12	13	14	15	16	17	18	19	20	21	22	23	24	グループ3
面積(m²)	1.01	0.85	1.26	0.90	1.84	3.10	0.96	1.76	2.88	3.25	0.54	20.10	1.30	3.60	0.62	0.96	8.72	5.72	2.50	1.19	0.43	17.87	6.06	3.54	ウルース。 合計面積(m ²)
番号																									口前回惧(III)
面積(m²)																									90.98

解析速報(web配信)

技術番号	BR020010								
技術名	には、								小株式会
試験日	令和7年 1 月 15 日	令和7年 1 月 15 日 天候 晴れ 気温 6.4 °C 風速 - m/s							m/s
試験場所	試験場所 国土技術政策総合研究所 部材保管用施設								
カタログ分類	非破壊検査技術	カタログ	検出項目 床	版劣化		試験区	☑分 標準	準試験	

試験で確認する カタログ項目

計測精度

対象構造物の概要

写真-1 検証試験体(架台上)

写真-2 検証試験体(床上)

試験方法(手順) 技術番号 BR020010

- ① 機器の搬入(電磁波レーダー、PC)(写真-3、4)
- ② 電磁波レーダー搭載の移動台車を起点側と終点側を往復して測定(4分割:写真-5)
- ③ PCに保存されたデータの確認(写真-6)
- ④ データ分析による損傷図作成

開発者による計測機器の設置状況

本来は車載型の電磁波レーダーを、標準試験用に台車に移設して計測を実施

安全のため、舗装面側から計測する技術については、検証試験体を床に置いて試験を実施

写真-3

写真-4

写真-6

計測結果の比較

※計測結果

■データ取得手段(移動手段):台車、徒歩 ■移動距離:台車5m、徒歩5m(4分割で計測)

真値との比較合わせ図

検出率=66%(当該技術で検出した正解損傷面積:A/正解損傷面積:B)

的中率=41%(当該技術で検出した正解損傷面積:A/当該技術で検出した損傷面積(誤検出含む):C)

計測値 (誤検出含む)

	四傾	(m)	損傷区分
1		0.296	深層土砂化
2		0.107	かぶり土砂化
(3)			舗装下 (体版上面) 潜水
4		0.358	かぶり土砂化
(5)			水平ひびわれ
6		0.238	舗装下 (旅版上面) 港水
Σ		1.285	(C)

正解損傷面積

	面積(m)	損傷区分
1	0.160	土砂化 (深)
2	0.000	水平ひびわれ
3	0.100	
4	0.027	土砂化 (深)
(5)	0.040	土砂化 (浅)
6	0.000	水平ひびわれ
7	0.160	土砂化 (浅)
8	0.039	滞水
Σ	0.526	(A)

真値 (正解値)

		(TT 124)	
	面積	(m²)	損傷区分
1		0.160	土砂化 (深)
2		0.040	水平ひびわれ
3		0.160	滞水
4			土砂化 (深)
(5)		0.040	土砂化(浅)
6			水平ひびわれ
7		0.160	土砂化(浅)
8		0.040	滞水
Σ		0.800	(B)

計測結果の比較

技術番号

BR020010

※計測結果

損傷区分別

・土砂化(深)

検出率=80%(当該技術で検出した正解損傷面積/正解損傷面積)

的中率=54%(当該技術で検出した正解損傷面積/当該技術で検出した損傷面積(誤検出含む))

・土砂化(浅)

検出率=100%

的中率=43%

•滞水

検出率=70%

的中率=34%

・水平ひびわれ

検出率=0%

的中率=0%

床版上面付近の電磁波平面画像

上部鉄筋付近の電磁波平面画像

s-s'ラインの電磁波縦断画像

s1の電磁波波形

○s1の推定について

推定結果:D(深層土砂化)

理由:健全部の上部鉄筋の電磁波波形と比較して、s1の上部鉄筋 の電磁波波形が消失している。また、s1の床版上面の電磁波波形 も一様ではない。

s2の電磁波縦断画像(s-s')

s2の電磁波波形

○s2の推定について

推定結果:A(舗装下(床版上面)滞水)

理由:健全部の上部鉄筋の電磁波波形と比較して、s2の上部鉄筋 の電磁波波形が消失している。また、s2の床版上面の電磁波波形 の反射強度が相対的に高い。

s3の電磁波縦断画像 (s-s')

s3の電磁波波形

○s3の推定について

推定結果:B(水平ひびわれ)

理由:健全部の上部鉄筋の電磁波波形と比較して、s3の上部鉄筋 の電磁波波形が相対的に不明瞭である。また、床版上面の反射強 度が相対的に低い。

技術番号	BR020012								
技術名 電磁パルス法を用いた非破壊によるコンクリート中の鉄筋 腐食評価				の鉄筋	開発者名	4 株 3	式会社 ア	ミック	
試験日	令和3年 3 月 24 日	天候	晴れ	気温	20.0	°C	風速	8.6	m/s
試験場所	福島ロボットテストフィー	ルド							
カタログ分類	非破壊検査技術	カタログ	検出項目 腐	食		試験	区分 現	場試験	

試験で確認する カタログ項目

動作確認(精度以外)

試験方法(手順)技術番号BR020012① 計測器の搬入(写真-3:RCレーダー、コイルユニット等)② 測定箇所のマーキング及びRCレーザーを用いて鉄筋探査で配筋位置を確認(写真-4)③ 計測状況(写真-5)④ 計測結果をPCのモニターで確認する。(写真-6)⑤ 後日、測定結果から鉄筋の腐食状態を評価する。

開発者による計測機器の設置状況

比較対象を得るため、 立会者による計測機器の設置状況

写真-7

※P1橋脚柱部基部近傍に配置された鉄筋の腐食状況を確認する。(写真-7)

※上記のコンター図で示したNGポイント評価は鉄筋からの受信波形と仮定して評価したものである。この場合腐食の可能性はほぼない。

技術番号	BR020012							
技術名	電磁パルス法を用いた。 腐食評価	非破壊によ	:るコンクリート中	□の鉄筋	開発者名	株式会	社 アミック	
試験日	平成30年3月7日	天候	曇り	気温	8.0	°C	l速 -	m/s
試験場所	東京都内某隧道、掘割	部擁壁						
カタログ分類	非破壊検査技術	カタログ	検出項目 🏻 🏗	類食		試験区分	-	

試験で確認する カタログ項目

計測精度

写真-1 全体写真

試験方法(手順) 技術番号 BR020012

- ① 計測器の搬入(RCレーダー、コイルユニット等)
- ② 測定箇所のマーキング及びRCレーダーを用いて配筋位置を確認(写真-2)
- ③ 測定状況(写真-3)
- ④ 測定結果をPCのモニターで確認する(写真-4)
- ⑤ 後日、測定結果から鉄筋の腐食状況を評価する。

開発者による計測機器の設置状況

比較対象を得るため、 立会者による計測機器の設置状況

写真-5 測定部はつり調査状況

写真-8 擁壁③はつり後状況

写真-6 擁壁①はつり後状況

写真-9 擁壁④はつり後状況

写真-7 擁壁②はつり後状況

写真-10 擁壁⑤はつり後状況

※測定部をはつり出した後の鉄筋状況を目視検査し結果を正解とし比較する

※1.電磁パルス法による腐食程度の測定結果と各測定箇所のはつり後鉄筋腐食状況結果とを比較する。

1. 電磁パルス法による腐食程度の測定結果

1.1 測定方法

全頁、「試験方法(手順)に従って各測定箇所の電磁パルス法による波形データを採取する。 装置構成図を図-1に各測定箇所のデータ採取 位置を図-2に示す。

性能を確保するための条件

- ・計測前にあらかじめコンクリート内部の鉄筋の配筋状況、かぶり厚さを測定しておく。測定範囲内を電磁波レーダー法等により配筋状況をマーキングし、電磁誘導法にて測定箇所の鉄筋かぶり厚さを測定する。
- ・かぶり厚さが60mm以下の場合適用可能である。
- ・センサはコンクリート中に伝搬する弾性波を受って信するためにコンクリートとセンサ間にカップリング材(グリセリンペースト)を塗布しコンクリートと密着させる必要がある。また、コンクリートの凹凸による影響を受けないよう対策する必要がある。
- ・鉄筋に同じ衝撃を与え弾性波を発生させるため、電磁パルス装置の出力が一定になるよう確認し鉄筋にパルス磁場を印加する。
- ・適切な弾性波を受信できるようA/D変換装置の分解能、測定レンジを適切に設定する必要がある。

図-2 各測定箇所のデータ採取位情

本試験の条件

- ・かぶり60mm以下の鉄筋に対して適用
- ・センサ接触部を砥石にて平滑に研削しグリセリンペーストを塗布
- ・電磁パルス装置の励磁コイル印加モニターの電圧値が30V±1Vの範囲内にあることを確認
- ・AD変換装置分解能10MHz/s、測定レンジ10ms

1.2 データ処理及び評価指標の算出

測定から判定までの流れを図-3に示す。

技術番号

BR020012

図-3に示す、波形パラメータ演算部とNGポイントについて以下に説明する。

波形パラメータ演算は以下6つの評価指標値を指し、受信波形(周波数スペクトル含む)の特徴を以下(a)-(f)毎に数値化したものである。

- (a)波形エネルギー: 時間軸波形の二乗和 Σ v²
- (b)波形継続時間時間:時間軸波形の最大振幅に対して10%未満に減衰するまでの時間
- (c)第1ピーク周波数:スペクトルのピークレベルTop3の第1ピーク
- (d)SL/SH:0~5kHzのスペクトル積算/5.1~50kHzのスペクトル積算
- (e)重心周波数 : スペクトルの0(kHz)~10(kHz)における重心周波数
- (f)相関係数: 各測定箇所のスペクトル平均値に対する各測定箇所の相関係数

採取した受信波形(周波数スペクトル含む)はその特徴を表す6つの評価指標によって数値化される。 各評価指標のばらつきを基に表-1に示す評価境界値を設定する。本試験では(a)(b)(d)(f)の評価指標にて 優位な差が認められたため、4つの評価指標に対して評価境界値を設定した。 評価境界値とはNGポイントが付与される基準である。

評価境界値を外れればポイントが付与され、大きく外れるほどポイントが高くなるように算出する。 このポイントのことをNGポイントという。また、各評価指標のNGポイントを合計したものをNGポイント合計点 という。

言い換えると、受信波形の形状が測定範囲内の平均値より異なる程、NGポイントが付与される。

NGポイント合計点による腐食判定基準を表-2に示す。判定基準の色分けを基に、各測定箇所毎に腐食評価結果をコンター図で表す。(図4-8)

この結果と、はつり後の目視による鉄筋腐食状況を比較し計測制度の比較を行った。

目視による鉄筋腐食の評価基準を表-3に示す(出典:コンクリート診断技術'18,(公社)日本コンクリート工学会,p190)

結果を図-4~図-8に示す。

図中に示す「検出率」は目視で確認された腐食の内、電磁パルス法による評価結果で腐食ありと判定されたものの比率を示し、「正解率」は電磁パルス法による評価結果で腐食ありと判定されたものの内、目視で確認された腐食ありの比率である。また、測定箇所5か所の「検出率」と「正解率」をまとめたものを表-4、表-5に示す。

本試験における、電磁パルス法の「検出率」は14/37(37.8%)、「正解率」は14/20(70%)であった。

表-1 評価境界値

表-2 電磁パルス法腐食評価基準

評価指標名称	受信箇所	評価境界值
波形エネルギー	鉄筋直上	10超
	直交軸上	4超
波形継続時間	鉄筋直上	3超
次形 胚 祝 时 间	直交軸上	4超
SL/SH	鉄筋直上	15超
31/ 311	直交軸上	10超
スペクトル	鉄筋直上	0. 5未満
相関係数	直交軸上	0. 5未満

セル色	NGポイント合計点	推定腐食度合い
グレー	0	なし
緑	1-2	小
黄	3-4	中
赤	>5	大

表-3 目視による鉄筋腐食の評価基準

鉄筋腐食度	鉄筋の状態
I	黒皮の状態、または錆は生じていないか全体に薄い綿密な錆であり、コンクリート面に錆が付着していることはない。
II	部分的に浮き錆があるか、小面積の斑点状態である。
Ш	断面欠損は目視観察では認められないが、鉄筋の周囲 または全長にわたって浮き錆が生じている。
IV	断面欠損を生じている。

11

12

13

14

10

非破壊・微破壊検査による鉄筋腐食の評価結果と目視による鉄筋腐食度の比較

凶-4 雅壁①評価結果

電磁パルス法腐食評価結果 (コンター図)

3

非破壊・微破壊検査による鉄筋腐食の評価結果と目視による鉄筋腐食度の比較

付録2-3-145

技術番号

BR020012

電磁パルス法腐食評価結果 (コンター図)

非破壊・微破壊検査による鉄筋腐食の評価結果と目視による鉄筋腐食度の比較

図-6 擁壁③評価結果

電磁パルス法腐食評価結果 (コンター図)

非破壊・微破壊検査による鉄筋腐食の評価結果と目視による鉄筋腐食度の比較

図-7 擁壁④評価結果

技術番号

BR020012

電磁パルス法腐食評価結果 (コンター図)

非破壊・微破壊検査による鉄筋腐食の評価結果と目視による鉄筋腐食度の比較

凶-8 擁壁⑤評価結果

表-4 電磁パルス法による鉄筋腐食の評価結果と「検出率」の以

目視による鉄筋腐食度調査結果								
		測定機器	擁壁①	擁壁②	擁壁③	擁壁④	擁壁⑤	検出率
			腐食有	腐食有	腐食有	腐食有	腐食有	
判	腐	iCOR	1/8	1/7	2/6	0/7	0/9	4/37
定	食	電磁パルス	7/8	1/7	1/6	3/7	2/9	14/37
結	有	分極抵抗	0/8	0/7	0/6	0/7	0/9	0/37
果	汨	自然電位	1/8	1/7	1/6	0/7	2/9	5/37

検出率:目視で確認された腐食の内、その手法で腐食と判定されたものの

表-5 電磁パルス法による鉄筋腐食の評価結果と「的中率」の

目視による鉄筋腐食度調査結果								
		測定機器	擁壁①	擁壁②	擁壁③	擁壁④	擁壁⑤	的中率
			腐食有	腐食有	腐食有	腐食有	腐食有	
判	腐	iCOR	1/2	1/2	2/2	0/0	0/0	4/6
定	食	電磁パルス	7/10	1/4	1/1	3/3	2/2	14/20
結	良有	分極抵抗	0/0	0/1	0/0	0/0	0/0	0/1
果	用	自然電位	1/4	1/3	1/1	0/0	2/2	5/10

的中率:その手法で腐食ありと判定されたものの内、目視で確認された腐食ありく

技術番号	BR020013]							
技術名 渦流探傷法によるケーブル腐食(亜鉛めっき消耗率)の検査				率)の検	開発者名	名 神銀	鋼鋼線工業	業株式会	会社
試験日	令和3年 4 月 8	3 天候	晴れ	気温	17.8	°C	風速	2.4	m/s
試験場所	実橋								
カタログ分類	非破壊検査技術	カタログ	検出項目 腐	富食		試験	区分 -		

試験で確認する カタログ項目

狭小進入可能性能 計測速度

対象構造物の概要

試験方法(手順) 技術番号 BR020013

- ① 計測機器の搬入:探傷器、制御・記録用ノートPC等(写真-2)
- ② 探傷器、分割開閉機能付き貫通センサーの確認(写真-3)、取付確認(写真-4)
- ③ 計測作業:計測器をケーブルに沿って自由落下させる。(写真-5)
- ④ 計測状況:計測器がケーブルに沿って落下しながら計測する。(写真-6)、撤去状況(写真-7)
- ⑤ 後日、計測したデータから腐食の有無等を評価する。

開発者による計測機器の設置状況

写真−2

写真-3

写真-4

写真-5

写真-6

写真-7

比較対象を得るため、 立会者による計測機器の設置状況

技術番号

BR020013

※計測結果

狭小進入可能性能 柴航路橋のケーブル間隔4mにおいて、計測を実施

撮影速度

対象ケーブル(W6)(ケーブル長35m)を計測するまでの時間(設置位置高さ7.5mの計測時間)

計測結果の比較 技術番号 BR020013

※計測結果(狭小進入可能性能)

ケーブル間隔4mを確認

※計測結果(撮影速度)

W6:ケーブル長(m)/撮影時間(s)=35/30=1.2m/s

技術番号	BR020013							
技術名	渦流探傷法によるケーフ 査	ブル腐食(重	亜鉛めっき消耗率	∞)の検	開発者名	名 神釒	綱鋼線工業	集株式会社
試験日	令和3年 4 月 22 日	天候	晴れ	気温	_	°C	風速	- m/s
試験場所	分析センター				•			
カタログ分類	非破壊検査技術	カタログ	検出項目を	食		試験	区分 -	

試験で確認する カタログ項目

計測精度

対象構造物の概要

※めっき消耗模擬試験体

No.	めっき線	裸鋼線	一部 50%	めっき	断面欠損(%)	センサー
			減肉線	消耗率(%)		直径(mm)
Test 1	19	0	0	0	0 (19 本基準)	80
Test 2	15	4	0	21	0 (19 本基準)	80
Test 3	0	13	0	100	32 (19 本基準)	80
Test 4	0	19	0	100	0 (19 本基準)	80
Test 5	7	0	12	63	32 (19 本基準)	80
Test 6	10	9	0	47	0 (19 本基準)	80
Test 7	37	0	0	0	0 (37 本基準)	80
Test 8	0	37	0	100	0 (37 本基準)	80
Test 9	37	0	0	0	0 (37 本基準)	150
Test 10	0	37	0	100	0 (37 本基準)	150
Test 11	30	7	0	19	0 (37 本基準)	80
Test 12	30	7	0	19	0 (37 本基準)	150

写真-1 模擬試験体

試験	方法(手順)	技術番号	BR020013
1	測定機器の搬入(写真ー2)		
2	模擬試験体の設置(写真ー3)		
3	センサの設置(写真-4)		
4	計測状況(写真-5,6,7)		
(5)	後日、計測結果から腐食を確認する。		

開発者による計測機器の設置状況

写真-2

写真-3

写真-4

写真-5

写真-6

写真-7

写真-8:模擬試験体

写真-10:センサ(直径80mm)

写真-9:模擬試験体

写真-11:センサ(直径150mm)

計測結果の比較

技術番号

BR020013

※計測結果

(1)めっき消耗量(19本試験体)

めっき消耗量が位相角に比例すると仮定し、Test1、Test4の結果を基準として、Test2(真値21%)、Test6(真値47%)のめっき消耗量を評価した結果を示す。消耗量評価はれぞれ29.9%と54.5%であった。(下図参照)

めっき量とECT信号の関係

Test1: 健全品(めつき消耗0%)の信号 [新品めつき素線19本東]

Test4: 裸素線束(めっき消耗100%)の信号 [裸素線19本東]

原点(O点)を中心としたときの信号の角度(位相角)により、亜鉛めっきの量を表すことが出来る。

事例データ

新品めっき19本東 01 10.719° 裸素線19本東 04 23.110° 差分 04-01 12.391°

めっき消耗度の評価要領(事例①)

Test2: めっき消耗度約21%を再現した 試験体の信号 [新品めっき素線15本+裸素線4本

原点(O点)を中心としたときの信号の角度(位相角)により、亜鉛めっきの量を表すことが出来る。

の束、めつき消耗度21.1%に相当]

事例データ

新品15本十裸4本 02 14.428° 健全品との差 02-01 3.709° めつき消耗度 3.709÷12.391×100=29.9% 評価値と実態との乖離 +8.8%

めっき消耗度の評価要領(事例②)

Test6: めつき消耗度約47%を再現した 試験体の信号

> [新品めつき素線10本+裸素線9本 の束(めつき消耗度47.4%に相当]

事例データ

新品10本十裸9本 06 17.470° 健全品との差 06-01 6.751° めっき消耗度 6.751÷12.391×100=54.5% 評価値と実態との乖離 +7.1%

(2)ケーブルサイズの影響

ケーブルサイズ(素線数)を変えた場合の信号を示す。(Test1とTest7の比較、Test4とTest8の比較)原点からの距離(振幅)はケーブルサイズによって大きく変わるので、対象に適した測定条件の調整が必要である。信号が小さいと精度が低下し、測定中の位相角の判定も難しいため、実際の測定の際には、測定値がフルスケール10Vの80~90%程度になるようにゲインを調整する。

位相角は素線19本と素線37本の違いは小さいが、実際のケーブルサイズは外径40mm以下から1000mm以上と26倍以上の違いがあり、ケーブルサイズが大きく変わる場合は、位相角も一定ではない。但し、めっき消耗によって位相角が反時計回りに変化するという関係は変わらないため、各ケーブルサイズのデータベース化によりめっき消耗量の評価は可能である。(下図参照)

ケーブルサイズとECT信号(振幅)の関係

Test1: 健全品(めっき素線19本東)の信号

Test4:裸素線19束の信号

Test7: 健全品(めっき素線37本東)の信号

Test8: 裸素線37束の信号

左図は、ケーブルサイズと原点からの距離(振幅)の関係を確認できるよう測定感度(ゲイン)を同一条件に換算して比較を行ったもの。

このように、被測定物のボリューム(素線数)に比例して信号強度が大きく変わる。

信号が小さいと精度が低下し、測定中の位相角の判定も難しいため、実際の測定の際には、測定値がフルスケール10Vの80~90%程度になるようにゲインを調整する。 (実際の測定中のデータは下図に表示)

事例データ

19本束 ゲイン14dBを10dBに換算(-4dB) 37本束 ゲイン9dBを10dBに換算(+1dB)

ケーブルサイズとECT信号(位相角)の関係

Test1:健全品(めっき素線19本束)の信号

Test4:裸素線19束の信号

Test7:健全品(めっき素線37本束)の信号

Test8:裸素線37束の信号

ケーブルサイズの違いは位相角にも表れる。 左図データはケーブルサイズの差が2倍弱であるが、 実用化されているケーブルは25倍以上のサイズ差が あるため、実際には大きく変わることも考慮する 必要がある。

ただし、健全品の位相角が低く、裸素線の位相角が高いという関係は変わらないため、各条件毎の信号位置のデータゲース化により評価可能。

事例データ

(19本東 ゲイン14dB、

37本束 ゲイン9dBで測定)

Test1:位相角 10.719° Test4:位相角 23.110° test7:位相角 11.542° Test8:位相角 23.519°

技術番号 BR020013

(3)センサー径の影響

センサー径を変えた場合の信号を示す。 (Test7とTest9の比較、Test9とTest10の比較)

センサー径80mmから150mmに変えると原点からの距離、位相角ともに大きく変化するが、めっき消耗によって位相角が反時計回りに変化するという関係は変わらないため、各センサーのデータベース化によりめっき消耗量の評価は可能である。 (下図参照)

センサー径とECT信号(振幅)の関係

Test7: φ80mmセンサー/健全品の信号 Test8: φ80mmセンサー/裸素線の信号 Test9: φ150mmセンサー/健全品の信号 Test10: φ150mmセンサー/裸素線の信号 ※ 試験体は全て37本東

左図は、同じ条件で比較できるよう測定感度(ゲイン)を同一条件に換算して比較を行ったもの。 センサーサイズに比例して信号強度が大きく変わる

信号が小さいと精度が低下し、測定中の位相角の判定も難しいため、実際の測定の際には、測定値がフルスケール10Vの80~90%程度になるようにゲインを調整する。 (実際の測定中のデータは下図に表示)

事例データ

ф80mmセンサー ゲイン9dBを10dBに換算(+1dB)ф150mmセンサー ゲイン15dBを10dBに換算(-5dB)

センサー径とECT信号(位相角)の関係

Test7: φ80mmセンサー/健全品の信号 Test8: φ80mmセンサー/裸素線の信号 Test9: φ150mmセンサー/健全品の信号 Test10: φ150mmセンサー/裸素線の信号 ※ 試験体は全て37本東

センサーサイズの違いは位相角にも表れる。 左図データはセンサーサイス・の差が2倍弱であるが、 実用化されているセンサーは測定対象に合わせ て60mm~300mm/7段階ある。

左図の通りセンサー毎に位相角が大きく変わるものの、健全品の位相角が低く、裸素線の位相角が高いという関係は変わらないため、各条件毎の信号位置のデータース化により評価可能。

事例データ

(φ80mmセンサー ゲイン9dB、

φ150mmセンサー ゲイン15dBで測定)

Test7:位相角 11.542° Test8:位相角 23.519° test9:位相角 -17.989° Test10:位相角 -4.759°

(4)めつき消耗量(37本試験体、センサー2種類の比較)

Test7、Test 8 の信号を基準として、Test11(真値19%)のめっき消耗量を評価した結果 (ϕ 80mmセンサーによる評価)を示す。

また、Test9、Test10の信号を基準として、Test12(真値19%)のめっき消耗量を評価した結果 (ϕ 150mmセンサーによる評価)を示す。

消耗量評価はそれぞれ24.6%と19.0%であった。 (下図参照)

φ80mmセンサー

Test7: φ80mmセンサー/健全品
Test8: φ80mmセンサー/めっき消耗100%
Test11: φ80mmセンサー/めっき消耗約19%再現
※ 試験体は全て37本東

事例データ

健全品位相角 θ7 11.542° 裸素線位相角 θ8 23.519° 混合品位相角 θ11 14.495° (Zn18.9%消耗)

88-07 [+23.519°]-[+11.542°]=11.977° 011-07 [+14.495°]-[+11.542°]=2.953° めつき消耗度 2.953°÷11.977°×100 =24.6%

実際との乖離 +5.7%

φ150mmセンサー

Test9: ф150mmセンサー/健全品
Test10: ф150mmセンサー/めっき消耗100%
Test12: ф150mmセンサー/めっき消耗約19%再現
※ 試験体は全て37本東

事例データ

健全品位相角 09 -17.989° 裸素線位相角 010 -4.759° 混合品位相角 012 -15.457°(Zn18.9%消耗)

010-09 [-4.759°]-[-17.989°]=13.230° 012-09 [-15.475°]-[-17.989°]=2.514° めっき消耗度 2.514°÷13.230°×100 =19.0%

実際との乖離 +0.1%

計測結果の比較

技術番号

BR020013

(5)減肉率

Test3の9本基準で32%減肉を模擬した試験体評価結果を示す。 減肉率評価は28.9%であった。(下図参照)

減肉率とECT信号の関係

Test4:裸素線19本東の信号

Test3:裸素線13本束の信号 [裸素線19本束基

準で31.6%減肉相当]

原点(O点)からの距離(振幅)により、減肉を表すことが出来る。

事例データ

裸素線19本東 A4 9.406V 裸素線13本東 A3 6.691V 差 A4-A3 2.716V 域内変更価値 (A4 A2) → A4

減肉率評価値 (A4-A3)÷A4 28.9%

評価値と実態の乖離 -2.7%

(6)めっき消耗評価以外に有効な使い方

一部に減肉部を設けた素線を混在した試験体(Test6)の信号を示す。混在部は位相角が健全とめっき消耗の中間にあり、めっきが消耗していることがわかる。また、健全品からめっき消耗に至る変化のラインより原点側にあることから、減肉が起きていることもわかる。また、横軸を測定位置(測定時間から推定)、縦軸を位相角として表示することで変化部を特定できる。(下図参照)

ECT信号の読み方①

Test5: φ80mmセンサー/人工欠陥付与の信号 ※ 試験体は19本束(詳細下図)

ECTでは、平面座標上に信号が得られることから、ケーブル長さ方向に連続した信号分布を得ることで、劣化度を数値評価する以外にケーブルの状態を把握することが出来る。

①複数の状態を検知できる。

左図の事例では、人工欠陥部がTest1(健全品) とTest4(裸素線)間にあり、人工欠陥部で亜鉛めっ きが減少していることが判る。

また、Test1とTest4をつなぐラインより原点(0点) に近い位置に信号が現れていることから、健全品 と比べて減肉していることも同時に判る。 ②変状部の位置が判る。

センサーを動かしながら連続的にデータを取得 することにより、左下図の通り人工欠陥部の信号 が乖離し、状態が変化している位置を特定できる。

技術番号

BR020013

(7)めっき消耗・減肉以外の影響

めっき素線37本束(Test7)の両端のテープ締付部を含む信号を示す。

締付部では位相角が時計回り方向(亜鉛めっきの消耗とは異なる方向)に変化している。これは素線同士の密着による渦電流の影響と考えられる。実際のケーブルの多くは張力が負荷されたより線であることから、この密着の影響がある。亜鉛めっきの消耗とは変化方向が異なることから区別して解析することができる。(下図参照)

ECT信号の読み方②

Test7: φ80mmセンサー

健全品(めっき素線37本束)の信号 ※ 測定両端を含む信号分布

主に斜張橋で使用される螺旋ケーブルや吊り橋 ハンガーロープ等に使用されるより線ロープでは、 架設による張力で絞りが生じる。

絞りに伴い、亜鉛めっきの密着度が変化することで、渦電流の発生経路も下図のように変化することから、ECT信号にもその影響が現れる。

試験体作成のため両端はテープにより結束(締め付け)しているが、左図はその影響が現れているものであり、密着度合いが増すことにより、信号分布は時計回りの方向(亜鉛めっきの消耗とは逆の方向)に現れる。

技術番号	BR020013								
技術名	渦流探傷法によるケー? 査	図(の)	開発者名	ろ 神	鋼鋼線工	業株式会社			
試験日	令和3年 4 月 8 日	天候	晴れ	気温	17.8	°C	風速	2.4 m/s	
試験場所	試験場所実橋								
カタログ分類	非破壊検査技術	カタログ	検出項目 腐	香食		試験	区分 現	場試験	

試験で確認する カタログ項目

動作確認(精度以外)

対象構造物の概要

試験方法(手順) 技術番号 BR020013

- ① 計測機器の搬入:探傷器、制御・記録用ノートPC等(写真-2)
- ② 探傷器、分割開閉機能付き貫通センサーの確認(写真-3)、取付確認(写真-4)
- ③ 計測作業:計測器をケーブルに沿って自由落下させる。(写真-5)
- ④ 計測状況:計測器がケーブルに沿って落下しながら計測する。(写真-6)、撤去状況(写真-7)
- ⑤ 後日、計測したデータから腐食の有無等を評価する。

開発者による計測機器の設置状況

写真-

写真-

写真-

写真-

写真-

写真-

※計測結果

渦流探傷試験法(以下、ETC)

ECT 測定データを図 2-1、図 2-2 に示す。測定は各 2 回行った。センサー走査は自重によるため、速度変化の影響を受けた表示位置のずれはあるが、2 回の測定結果はほぼ一致している。これらの図から、亜鉛消耗の評価を行うには、以下に記す基準データが必要である。

ECT 測定データの評価基準

めっき消耗量の評価には下記3点の基準が必要。

[A]原点(0.0)

めっき消耗量は、ゼロ点を中心とした測定信号の角度(位相角)により評価する。

[B]新品相当位相角(図中青線)

新品(新品相当状態)の測定信号と原点 を結んだ直線を求める。この直線の角度 が新品相当位相角。

[C]めっき無し位相角(図中赤線)

めっきが無く、かつ、鋼線部分の消耗が 無い状態を示す点と原点を結んだ直線 を求める。この直線の角度がめっき無し 位相角。

また、ハンガーロープのようなより線ロープは、張力の影響を受けて新品状態でも信号分布が 生じるため、下記2つの補助線を引き、その交点を求めて張力の影響が無い場合の新品相当信号 を基準点としている。

- ◆亜鉛量変化方向ライン(図中緑線) めっきの消耗度合により信号が分布する線
- ◆張力影響方向ライン(図中点線矢印) めっきの消耗が無く、張力の影響のみで信号が分布する線

上記の各線・矢印の相対関係(赤線は青線より12°程度反時計回り側に位置するなど)はセンサーを変えてもほぼ一定であるが、具体的な方向はセンサーによって異なる。

図 2-1、図 2-2 の X-Y 図から、今回測定した 2 本の信号分布はいずれも張力影響による分布のみが認められ、亜鉛めっきの消耗が生じていても軽微なレベルと推定される。

※計測結果

橋梁名 関東地	橋梁名 関東地方整備局管内橋梁						卓上西	掉上型(ET-B1/T)			
Q女 公白	73 正 岬 内 旨	r j/间本					36m				
1 /					センサー 耐久型						
置格点 格点								(ET-S250-A)			
	繰返し			и	表置設分					拉拉	E値
被測定物	深及し (n)	測定記号	測定日	F(kHz)			F(kHz)	を示設が G(dB)	P(°)	(dB) (fill de la fill	F順 F順
W6ケーブル	1	W6-1	2021/4/8	10	12	0	10	10	0	-2	0
W6ケーブル	2	W6-2	2021/4/8	10	12	0	10	10	0	-2	0
										-2	
西データ -35 ┌────								評価値		1m # 70	,
-45			<u> </u>							相角/°	
		^	\sim	/ \	₹1				W6-		W6-2
-55 -65	M	1 18			#			最大値	-39.9	92 -3	39.90
-65	/ ` \	// \\ 	- Vel	_//_	+		\vdash	平均値	-63.9	99 -6	53.8
-75 V	<u> </u>	191 Well	Ar 1	<i>M</i> //	_ \ \ <u>\</u> \\	<u> </u>		最小値	-83.0)2 -8	32.9
-85 下側 <=		<u>VV , W</u>		,	<u>, ₹</u> }	上側					
	20 30	40 5	60	70	80	90	100				
定データ						備考					
			[X-Y / 測]	定信号分布	の比較】		データ	V-T	図の構	軸は、海	則定
V) • W6-1					, U) <u> </u>					を百分	
• W6-2						て表示		~)	19 30 3	** U /)	
.0						図中	い ラベル	1十 下	៕ = 88	床側、	上個
						主塔側		14, 11	知一四	// DOL -	[Ki]
								1十 会	といっ	て位相角	五 (古)
						表示。		14、少	っこし、	C 194.7日 P	7 旧正.
.0							ータの	表示け	ゲイ	/を10c	1B)?
							ている		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	- 2100	11)(
						10.0			V / 38/19	定信号分·	t-/+
.0					C-20	Y (V)		2		E 16 5 77 1	ין צין נווי
.0		PACIFIC SERVICE	auto in lating	3.70		5.0		w6-1 _			_
		6. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5. 5.				0.0		W6−2			
.0						0.0					
						-5.0					_
					V 00						X (
.0					(V)	-10.0		-5.0	0.0	F.0	
0.0 1.0	2.0	3.0	4.0	i.0	6.0				0.0	5.0	10.0
8.0							[V-	- <i>T(X軸)]</i>			
6.0				\mathcal{I}	// <u>}</u>					線:W5	
4.0	ma_N	· ~	/~ \\	$\overline{}$	# 3	$\overline{}$			緑	線:W5	-2
2.0	- No. of the last				//	1		\sqcup			
-	<u> </u>	AN W	V	V ∞00	<u> </u>	**W					
下側 <=						=>	上側				
-2.0 0 10	20	30 40	50 60	70	80		90	100			
0.0	20			/0				- <i>T(Y軸)]</i>			
							7.7	/ (/ 平田 /)			
-2.0											
-4.0											
-6.0											
-8.0 下側 <=						=>	上側				
-6.0 -8.0 -10.0 0 10	20	30 40	50 60	70	80		<u> </u>	100			

技術番号	BR020014								
技術名 床版劣化状況把握技術(スケルカビューDX) 開発者名 ジオ・サーチ株式会社									
試験日	令和2年 7 月 9 日	天候	晴	気温	25.0	o°C	風速	2	m/s
試験場所	試験場所 某橋梁(北海道内)								
カタログ分類	非破壊検査技術	カタログ	検出項目・コ	失筋腐食 と砂化 帯水		試験	区分 -		

試験で確認する カタログ項目

狭小進入可能性能 計測レンジ 検出性能 計測速度

対象構造物の概要

試験方法(手順) 技術番号 BR020014

① 地中レーダ装置を搭載した探査車の各計測機器(写真-1~4)を起動する。

- ② 計測機器の起動後動作確認を行う。
- ③ 探査車で走行しデータを取得する。(橋梁を4往復)なお、データ取得時には格納しているレーダを張り出して走査する。(写真-5)
- ④ 取得データを探査車内の収録PCに送信する。
- ⑤ 取得データを基地に持ち帰りデータの画像処理を行い床版の状態把握を行う。

開発者による計測機器の設置状況

計測結果の比較 技術番号 BR020014

1 はじめに

舗装版を剥がさず床版の劣化状況を把握する技術(スケルカビューDX)の下記項目についての検証結果を報告する。

表-1.1 検証項目

検証項目	検証項目 内容			
狭小進入可能性能	幅員3.5mでの測定が可能か。			
計測レンジ	路面からの深さ0.5mまでデータ取得ができるか。			
検出性能	鉄筋コンクリート床版上面、上部鉄筋、下部鉄筋の反射信号が検出できるか。			
計測速度	一般道路(制限速度60km/h)での測定が可能か。			

2 検証箇所の概要

(1)概要

1)橋梁名:A橋 2)橋長:39.7m

3)形式:単純合成鈑桁橋2連 4)路線名:一般国道230号

5)場所:札幌市南区定山溪

6) 管理者: 札幌開発建設部札幌事務所

(2)測定日

2020/7/9 午後12時~13時30分

図-2.1 位置図

3 狭小進入可能性能

幅員3.5mでの実施を確認

4 計測レンジの検証

(1)確認内容

最大深度:路面からの深さ0.5m

(2)検証結果

検証結果:路面からの探査深度が0.58(m)であることが確認された。

計測結果の比較 技術番号 BR020014

5 検出性能の検証

(1)確認内容

縦断データにおいて、鉄筋コンクリート床版上面、上部鉄筋、下部鉄筋の反射信号が検出できるか。

(2)検証結果

各反射信号を検出できた。

図-5.1 反射信号検出結果

6 計測速度の検証

(1)確認内容

一般道路(制限速度50km/h)での測定が可能か。

(2)検証結果

下図の通り路面映像および床版内部データを取得できたため、一般道路での測定が可能である。

計測時間: 2020.07.09 12:54:42 ~ 2020.07.09 12:54:46(GPSより取得)

計測時間:4秒 計測距離:39.74m

計測速度:35.7km/h(当日の一般車両の交通の流れ)

図-6.1 計測速度検証結果

技術番号	BR020014								
技術名	床版劣化状況把握技術(スケルカビューDX) 開発者名 ジオ・サーチ株式会社						注		
試験日	令和3年 4 月 7 日	天候	晴れ	気温	22.4	°C	風速	2.4	m/s
試験場所	試験場所実橋								
カタログ分類	非破壊検査技術	カタログ	検出項目鉄	筋の腐쇱	È	試験	区分 习	見場試験	

試験で確認する カタログ項目

動作確認

対象構造物の概要

① 測定車(地中レーダ装置を搭載した車両)を指定の駐車場で作動確認する。(写真-3、写真-4)

- ② 測定車内のPCで計測データを確認する。(写真-5)
- ③ 計測車の走行状況:上り線側走行(写真-6)
- ④ 計測車の走行状況:下り線側走行(写真-7)
- ⑤ 測定データを計測車内のPCに送信し、後日、データを画像処理等で損傷の有無を確認する。

開発者による計測機器の設置状況

比較対象を得るため、 立会者による計測機器の設置状況

写真-8:路面状況(起点より撮影)

写真-9:路面状況(終点より撮影」)

技術番号	BR020014								
技術名 床版劣化状況把握技術(スケルカビューDX) 開発者名 ジオ・サーチ株式会社									
試験日	令和5年 4 月 26 日	天候	曇り	気温	7.6	°C	風速	4.8	m/s
試験場所	試験場所 某橋梁								
カタログ分類	非破壊検査技術	カタログ	検出項目・	鉄筋腐食 土砂化 滞水		試験	区分 -		

試験で確認する カタログ項目

計測精度

検証の概要

1 はじめに

舗装版を剥がさず床版の劣化状況を把握する技術(スケルカビューDX)の

下記項目についての検証結果を報告する。

表-1.1 検証項目

検証項目	内容
計測精度	正解率、劣化 適合率、劣化 再現率、健全 適合率、健全 再現率。

2 検証の概要

(1)対象

本検証は2橋で実施した。表-2.1に橋梁諸元、次頁図-2.1に橋梁図面を示す。

表-2.1 橋梁諸元

	· · · · · · · · · · · · · · · · · · ·									
番号	橋梁名	橋種	構造種別	橋長(m)						
1	B橋	鋼橋	連続非合成鈑桁	116.5						
2	C橋	鋼橋	単純箱桁	52.1						

(2) 測定日

令和5年 4月 26日

(3)検証内容

まず対象橋梁に電磁波レーダ調査・解析を実施し、劣化判定領域と健全判定領域を定義した。 次に、舗装を全面開削し床版を露出させ、打音調査により実際の劣化領域と健全領域を定義した。 両者の結果を照合し、正解率、適合率、再現率を算出し、評価を行った。

図-2.1 橋梁図面

3 計測精度の検証

(1)方法

実際の開削結果と照合し正誤の領域分類を行い、分類結果から精度指標の算出を行った。 図-3.1に語句の定義、図-3.2にケース別の精度イメージを示す。

【語句の定義】

A:検証床版領域

- B:実際の劣化領域(全面開削による打音調査で床版劣化ありと判定した領域)
- C:実際の健全領域(全面開削による打音調査で健全と判定した領域)
- D:電磁波レーダの劣化判定領域
- E: 電磁波レーダの健全判定領域
- F:劣化合致領域(電磁波レーダの劣化判定箇所と実際の劣化箇所が合致した領域)
- G:健全合致領域(電磁波レーダの健全判定箇所と実際の健全箇所が合致した領域)
- H:見逃し領域(電磁波レーダの健全判定箇所と実際の劣化箇所が重なった領域)
- I:空振り領域(電磁波レーダの劣化判定箇所と実際の健全箇所が重なった領域)

【精度指標の算出】

- 正解率:(F+G)/A×100(検証領域のうち、正解していた領域の割合)
- ② 劣化適合率: F/D × 100 (電磁波レーダの劣化判定領域のうち、実際に劣化していた割合)
- ③ 劣化再現率: F/B×100 (実際の劣化領域のうち、電磁波レーダで劣化と判定した割合)
- ④ 健全適合率: G/E×100 (電磁波レーダの健全判定領域のうち、実際に健全だった割合)
- ⑤ 健全再現率: G/C×100 (実際の健全領域のうち、電磁波レーダで健全と判定した割合)

図-3.1 照合結果の分類

(2)結果

2橋の各領域を合算した数値を用いて計測精度を算出した。

表-3.1に計測精度検証結果を示す。また、図-3.3,4に1橋毎の検証結果詳細を示す。

表-3.1 計測精度検証結果

下解率	劣	化	健全			
上件华	適合率	再現率	適合率	再現率		
81%	56%	38%	85%	92%		

図-3.3 計測精度検証結果詳細(B橋)

図-3.4 計測精度検証結果詳細(c橋)

技術番号	BR020014								
技術名 床版劣化状況把握技術(スケルカビューDX) 開発者名 ジオ・サーチ株式会社							t		
試験日	令和7年 1 月 15 日	天候	晴れ	気温	11.7	°C	風速	——————————————————————————————————————	m/s
試験場所	試験場所 国土技術政策総合研究所 部材保管用施設								
カタログ分類	非破壊検査技術	カタログ	検出項目	床版劣化		試験	区分標	準試験	

試験で確認する カタログ項目

計測精度

対象構造物の概要

写真-1 検証試験体(架台上)

写真-2 検証試験体(床上)

試験	方法(手順)		技術番号	BR020014				
1	① 機器の搬入(電磁波レーダー、PC)(写真-3)							
2	測線の目安とする墨出し(糸張り)(写真-4)							
3	電磁波レーダー搭載の移動台車を起点側と終点側を往復して測定(5測線で計測:写真-5)							
4	PCに保存されたデータの確認(写真-6)							
5	データ分析による損傷図作成							

開発者による計測機器の設置状況

本来は車載型の電磁波レーダーを、標準試験用に台車に移設して計測を実施安全のため、舗装面側から計測する技術については、検証試験体を床に置いて試験を実施

写真−3

写真-4

写真-5

写真-6

計測結果の比較

※計測結果

■データ取得手段(移動手段):台車、徒歩 ■移動距離:台車5m、徒歩5m(×5測線)

真値との比較合わせ図

検出率=75%(当該技術で検出した正解損傷面積:A/正解損傷面積:B)

計測値(誤検出含む)

	面積	(m²)	損傷区分
1			土砂化
2		0.068	土砂化
3		0.261	
4		0.234	土砂化
(5)		0.111	土砂化
6		0.094	滞水
Σ		1.069	(C)

正解損傷面積

	血槓(m)	
1	0.159	土砂化 (深)
2		水平ひびわれ
3	0.160	滞水
4		土砂化 (深)
(5	0.039	土砂化 (浅)
6	0.000	水平ひびわれ
(7		土砂化 (浅)
8	0.040	滞水
Σ	0.597	(A)

真値 (正解値)

	面積	(m^2)	損傷区分
1			土砂化 (深)
2			水平ひびわれ
3		0.160	滞水
4		0.040	土砂化 (深)
(5)		0.040	土砂化(浅)
6			水平ひびわれ
7		0.160	土砂化 (浅)
8		0.040	滞水
Σ		0.800	(B)

的中率=56%(当該技術で検出した正解損傷面積:A/当該技術で検出した損傷面積(誤検出含む):C)

計測結果の比較

技術番号

BR020014

※計測結果

損傷区分別

・土砂化(深)

検出率=100%(当該技術で検出した正解損傷面積/正解損傷面積)

的中率=48%(当該技術で検出した正解損傷面積/当該技術で検出した損傷面積(誤検出含む))

・土砂化(浅)

検出率=99%

的中率=66%

※土砂化の深浅の程度判定は不可

•滞水

検出率=100%

的中率=56%

・水平ひびわれ

検出率=0%

的中率=0%

ジオ・サーチ株式会社 供試体計測結果

床版上部劣化判定(土砂化) 舗装境界滞水判定 供試体 データ計測範囲

技術番号	BR020015								
技術名	デジタル打音検査とデジ 承の機能障害)	タル目視り	点検の統合シスラ	テム(支	開発者名	3 原 -	子燃料コ	□業株式会	会社
試験日	令和3年 3 月 30 日	天候	晴れ	気温	18.4	°C	風速		m/s
試験場所	試験場所 国土交通省 国土技術政策総合研究所 部材保管用施設								
カタログ分類	非破壊検査技術	カタログ		承の機能		試験	区分	標準試験	

試験で確認する カタログ項目

計測精度

対象構造物の概要

検証試験体

写真-1 RCボックスカルバート(EF-1) ボルト数32箇所

写真-2 RCボックスカルバート(EF-2) ボルト数31箇所 ボルト数 合計63箇所

試験	方法(手順)		技術番号	BR020015					
1	① 計測装置"AEセンサ、ハンマー"を搬入する。								
2	AEセンサをタブレット末端に接続する。								
3	アンカーボルトにAEセンサを押し付け、ハンマーで打音する。								
4	AEセンサから取得したデータを記録者がタブレット端末にて、確認する。								
5	後日、取得したデータより不健全箇所を検出								

開発者による計測機器の設置状況

1. 機器の設置

写真-4 開発者計測機器

- 評価ピーク周波数はボルト径/頭部長さにより変化することから、同一径、同一頭部長さのグループに分け、事前に示された健全ボルトの評価ピーク周波数を健全基準値として設定し、健全/不健全を判断する。
- なお、健全基準値は通常、複数の健全ボルトにおいて、①のばらつき、②の差異を考慮して設定する。
- ①健全ボルト間の評価ピーク周波数

表-1 計測結果の比較

					14H >	- 10 1					
ボルト番号	ボルト径	状態	健全	開発者判 定	評価ピーク 周波数(Hz)	ボルト番号	ボルト径	状態	健全	開発者判 定	評価ピーク 周波数(Hz)
ボルト01	M16	C16U100腐全	×	×	717	ボルト33	M24	M24U半施打	×	×	517
ボルト02	M16	R16U100硬化	×	×	640	ボルト34	M16	R16U100健全	0	×	626
ボルト03	M16	R16U025充浅	×	×	620	ボルト35	M16	M16U全施斜	×	×	288
ボルト04	M16	R16U100施斜	×	×	662	ボルト36	M16	C16U100付着	×	×	701
ボルト05	M16	C16U100硬化	×	×	566	ボルト37	M24	M24U全健全	0	-(基準)	1085
ボルト06	M16	C16U100施短	×	0	765	ボルト38	M16	M16U全健全	0	0	317
ボルト07		C16U100健全	0	-(基準)	749	ボルト39	M16	C16U100破断	×	0	750
ボルト08	M16	M16U半施打	×	×	307	ボルト40	M16	R16U050充浅	×	×	581
ボルト09		C16U070施長	×	×	442	ボルト41	M16	C16U100施斜	×	×	434
ボルト10	M16	R16U100付着	×	×	417	ボルト42		M24D全健全	0	×	938
ボルト11	M16	C16D100健全	0	×	721	ボルト43	M16	M16D半施打	×	0	314
ボルト12	M16	C16D050充奥	×	×	234	ボルト44	M16	R16D100付着	×	×	463
ボルト13	M18	R18D100健全	0	-(基準)	681	ボルト45	M16	C16D070施長	×	×	542
ボルト14		R18D025充奥	×	×	671	ボルト46		C16D100施短	×	×	701
ボルト15	M18	R18D050充奥	×	×	179	ボルト47	M16	C16D025充奥	×	×	345
ボルト16	M24	M24D半施打	×	×	497	ボルト48	M16	R16D025充奥	×	0	902
ボルト17	M16	R16D100施斜	×	×	616	ボルト49	M16	C16D100施斜	×	×	322
ボルト18	M16	C16D100硬化	×	×	701	ボルト50	M16	C16D100付着	×	×	747
ボルト19	M16	R16D100硬化	×	×	615	ボルト51		M16D全健全	0	0	406
ボルト20	M16	M16D全施斜	×	0	316	ボルト52	M16	R16D050充奥	×	×	195
ボルト21	M16	R16D100健全	0	×	628	ボルト53	M16	R16S100腐浅	×	×	655
ボルト22	M16	C16S100腐奥	×	×	739	ボルト54	M16	C16S100健全	0	×	742
ボルト23		C16S100硬化	×	×	672	ボルト55	M18	R18S100破断	×	0	697
ボルト24	M16	C16S100施斜	×	×	512	ボルト56	M18	R18S100腐全	×	0	697
ボルト25	M16	C16S100付着	×	×	728	ボルト57		M24S全健全	0	×	510
ボルト26	M16	M16S全健全	0	-(基準)	314	ボルト58	M16	M16S全施斜	×	×	283
ボルト27	M16	R16S100硬化	×	×	645	ボルト59	M16	C16S100腐浅	×	×	726
ボルト28		R18S100健全	0	0	702	ボルト60		R16S100腐奥	×	×	641
ボルト29	M16	M16S半施打	×	0	355	ボルト61	M24	M24S半施打	×	×	481
ボルト30	M16	C16S100施短	×	×	732	ボルト62		R16S100付着	×	×	436
ボルト31	M16	C16S070施長	×	×	369	ボルト63	M16	R16S100施斜	×	×	674
ボルト32	M16	R16S100健全	0	×	582						

検出率=不健全と判定されてもののうち、正解個所数/真値の不健全箇所)

=41/49

=0.84

的中率=不健全と判定されてもののうち、正解個所数/真値の不健全箇所)

=41/48

=0.85

技術番号	BR020015								
技術名	デジタル打音検査とデジ 承の機能障害)	タル目視点	点検の統合シ	ステム(支	開発	者名 原·	子燃料工美	Ě株式会	社
試験日	令和3年 3 月 25 日	天候	晴れ	気温	1	8.5 °C	風速	0.5	m/s
試験場所	試験場所 福島ロボットテストフィールド								
カタログ分類	非破壊検査技術	カタログ	検出項目	ゆるみ		試験	区分豐現	場試験	

試験で確認する カタログ項目

動作確認(精度以外)

対象構造物の概要

試験	方法(手順)		技術番号	BR020015						
1	① 計測器の搬入(写真-3:AEセンサ、計測装置、PCタブレット、打音ハンマー)									
2	AEセンサと打音ハンマー(写真-4)									
3	計測状況:リフト車に同乗し、計測する。(写真-5)									
4	計測状況:アンカーボルトの頭部を打音し、AEセンサで計測する。(写真-6)									
5	計測結果(波形)をPCのモニターで確認する。(写真-7)									

開発者による計測機器の設置状況

比較対象を得るため、 立会者による計測機器の設置状況

技術番号

BR020015

〇計測結果

(1)鋼少数主桁G1支承のアンカーボルト

ボルトNo.1_ナットあり (ナットの緩みあり)

■周波数分布※

ボルトNo.2 ナットあり (ナットの緩みあり)

■周波数分布

(2)鋼多数主桁G2支承のアンカーボルト

ボルトNo.3_ナットあり (ナットの緩みあり)

ボルトNo.4 ナットあり (ナットの緩みあり)

■周波数分布

■周波数分布

考察

アンカー頭頂部からナットまでの長さ(頭部長さ)が30 mm以下の場合には、3000 Hz以上が健全、下回れば異常と判定している。(次頁:参考資料参照)。

今回対象のボルト径(ボルトNo.1、2はM30、ボルトNo.3、4はM27、いずれも頭部長さ30mm以下)は、適用対象であることから、健全基準周波数を3000Hzを適用する。

※1 頭部長さが30 mm以上の場合は、得られる周波数に対して補正が必要。

※2 本装置でいう異常は、ボルト・ナットのゆるみや、埋め込みコンクリートのひびわれに伴うボルトの 定着力低下である。

本現場検証では、実施してないが、異常を検知した後、ナットを締めて測定することで、ナットのゆるみか、埋め込みコンクリートのひびわれに伴うボルトの定着力低下なのかを判別する。

計測結果の比較 技術番号 BR020015

※参考資料

基準周波数の設定

M24~M36の健全なアンカーボルトのモックアップ試験体の頭部長さと周波数の関係より、アンカー頭頂部からナットまでの長さ(頭部長さ)が30 mm以下の場合には、3000 Hz以上が健全、下回れば異常と判定する。その場合の3000Hzを基準周波数と設定する。

M24~M36アンカーボルトモックアップ試験体

M24~M36アンカーボルトのボルト頭部長さと周波数の関係