
技術番号	CM010001								
技術名	IPカメラだけで夜間運用	、録画運用	目可能なエッジ技術	Ī	開発者名	ろ サン	<i>、</i> システ <i>ム</i>	ゝサプライ	(株)
試験日	令和2年1月20日PM	天候	晴	気温	. 11	°C	風速	—	m/s
試験場所	土木研究所管内 試駁	橋梁							
カタログ分類	データ収集・通信	カタログ	検出項目 一			試験	区分 現	場試験	

試験で確認する カタログ項目

動作確認

対象構造物の概要

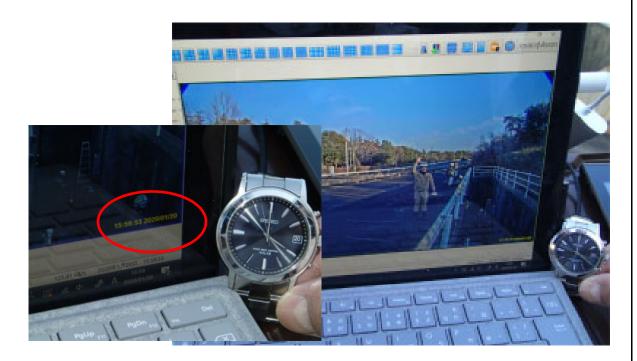
試験	方法(手順)		技術番号	CM010001
1	任意の位置に	IPカメラを三脚や固定装置を用いて設置		
2	撮影対象(人	の動き)を準備し、映像を記録		
3	映像確認用P	C からWAN 経由でエッジ及びデモサーバへ同時アクセス		
4	映像監視PC	へ各エッジ及びデモサーバのライブ映像の同時配信を確認		
5	エッジ及びデ	モサーバの録画映像の同時再生を確認		

開発者による計測機器の設置状況

- 1. 機器の構成と設置
- ①IPカメラ(エッジサーバSDカード内蔵)(写真-2)
- ②無線ルーター(写真-3) 電源は商用電力またはバッテリー カメラとの接続延長は最大100m
- ③映像確認用PC, モバイルルーター 取付け位置は、地覆上面(写真-3), PCは手持ち。
- 2. 伝送方法
 - ・IPカメラ(エッジサーバ)の常時録画映像を映像確認用PC からインターネット回線でIPカメラへアクセスする。 ライブ映像と録画映像の再生が可能

写真-2 カメラの固定状況

写真-3 その他の機器


図-3 システム概要

計測結果の比較

技術番号

CM010001

1. ライブ映像の確認

技術番号	CM010002								
技術名	ネットワーク構造モニタリ	Jング			開発者名	3 サン	ンシステム	゚゚サプライ	(株)
試験日	令和2年1月20日PM	天候	晴	気温	. 11	°C	風速	_	m/s
試験場所	土木研究所管内 試駁	转橋梁							
カタログ分類	データ収集・通信	カタログ	検出項目 -			試験	区分 現	場試験	

試験で確認する カタログ項目

動作確認

対象構造物の概要

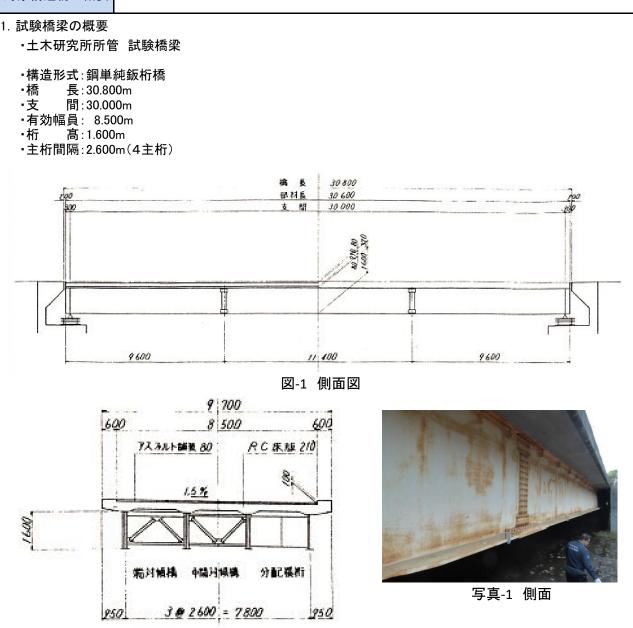


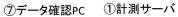
図-2 断面図

試験方法(手順) 技術番号 CM010002

机上に本機器を設置し、デモ用信号(周波数2Hz,±1Vのサイン波)を信号発信器から入力する。 (1)

- **(2**) デモ用信号を入力後、データ収録を開始し、時系列データと10分間の統計データを記録
- 3 『データ収録完了後、データ確認用PCから計測サーバへリモートアクセスし、収録したデータを確認。
- 4 リモートモニタリングの状況、計測データの有無、計測データ整合性の確認を実施

開発者による計測機器の設置状況



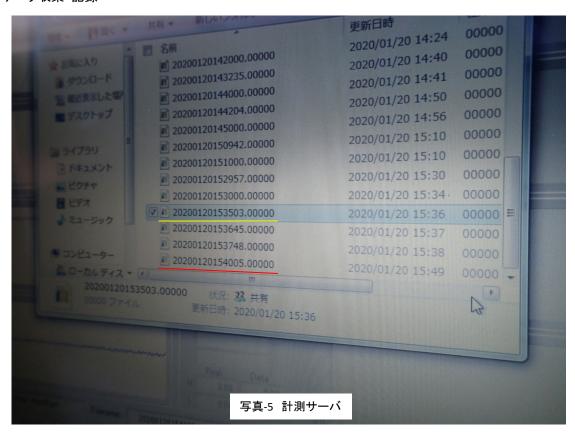
- ①計測サーバ(写真-2)
- ②無線ルーター
- ③モバイルルータ
- 4スウィッチングハブ
- ⑤データ収集装置
- ⑥信号発信器

電源は商用電力またはバッテリー =

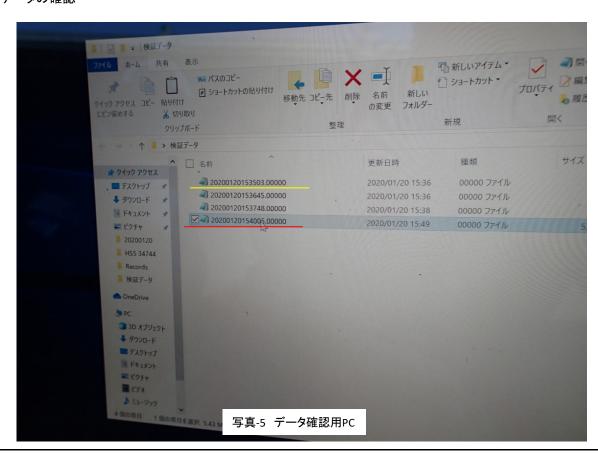
⑦データ確認用PC

AC100V

写真-2 計測機器の構成


計測結果の比較

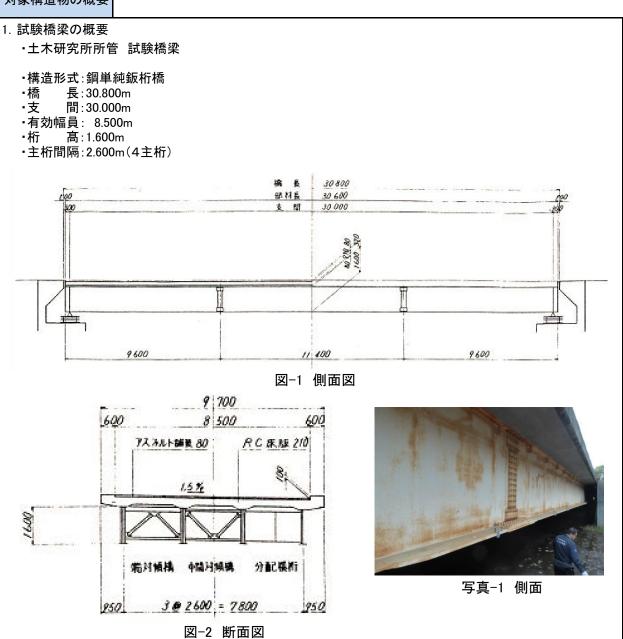
1. デモ用信号の入力(周波数2Hz,±1Vのサイン波)



計測結果の比較 技術番号 CM010002

2. データ収集・記録

3. データの確認



技術番号	CM010003							
	電源不要で変位・応力・荷 技術	重等のデー	タをスマホで確認可	『能な	開発者	名 CA	CH(株)	
試験日	令和2年1月20日PM	天候	晴	気温	. 11	°C	風速	— m/s
試験場所	土木研究所管内 試駭	検橋梁			構造	物名	橋梁	
カタログ分類	データ収集・通信	カタログ	検出項目 -			試験	区分	現場試験

試験で確認する カタログ項目

現場での動作確認

対象構造物の概要

試験方法(手順)

技術番号

CM010003

- ① 金属板にセンサ(ひずみゲージ)を接着剤で貼り付け(写真-3)、通信機に接続(写真-4)する。
- ② センサ(ひずみゲージ)を取り付けた金属板を(写真-5)のように、強制変位を与え、通信間隔(3分毎)を維持する。
- ③ 強制変位を3分維持した後、除荷する。強制変位を与えた時刻、除荷した時刻を記録する。
- ④ 手元のPCにデータを送信させ、データ到着時刻と強制変位を与えた時刻とを比較し、整合を確認する。(写真-6)

開発者による計測機器の設置状況

- 1. 機器の構成および設置・伝送
 - ・通信機本体にセンサ(ひずみゲージ等)を接続して 使用する。(写真-2)
 - ・通信機の設置は、鋼橋の場合はフランジ部へ マグネットまたは接着剤で固定する。 コンクリート橋の場合は桁部に接着剤またはねじ止め。
 - ・取得したデータは、通信機本体内で圧縮し、(図-3)に 示すように基地局、 クラウド等を経由しPCなどの端末 へ一定間隔(今回は3分間隔で設定)で送信される。

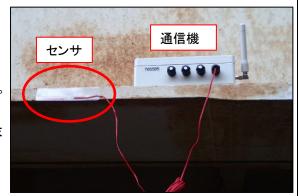


写真-2 機器の構成

※sigfox通信とはIoT向けの無線通信規格です。低消費電力で長距離伝送が可能です。

図-3 通信方法

1. 金属板にひずみゲージを接着剤で貼り付け(写真-3)、通信機に接続(写真-4)する。

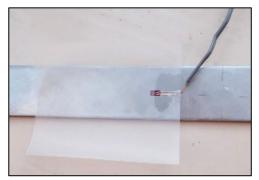


写真-3 センサ(ひずみゲージ)の貼付け

写真-4 センサと通信機の接続

計測結果の比較

- 1. 金属板に強制変位を与え時刻および除荷した時刻と手元PCのデータ到着時刻の整合を確認する。
- 2. データ到着時刻の確認

表-1に示すとおり、通信の確認ができた。

表-1 通信到着時刻

	強制変位 時刻	通信到着 時刻	備考 ひずみ(με)
強制変位前	1	16:45:02	-2,359
強制変位開始	16:47:00	16:47:39	-721
強制変位終了	16:50:00	16:50:16	-963
除荷	16:51:00	16:52:53	-2,223

写真-5 強制変位

sigfox到着時刻	データメモ	非常送信設定	通常送信/非常送信	Ch1 ゼロリセット	Ch1 ひずみ[με]	温度[℃]	温度[%]
2020/01/20 16:52:53	,	非常送信しない	通常送信		-2223	強制]変位
2020/01/20 16:50:16	載荷	非常送信しない	通常送信		-963	13.5	44
2020/01/20 16:47:39	載荷	非常送信しない	通常送信		-721	強制 12.9]変位 45
2020/01/20 16:45:02	1	非常送信しない	通常送信	0	-2359	強制]変位
2020/01/20 16:42:25	ゲージ張替え	非常送信しない	通常送信		-2361	12.1	46
2020/01/20 16:36:18	,	非常送信しない	通常送信	9	-110	7.5	47

写真-6 通信結果(手元PCの画面)

技術番号	CM010004					
技術名	汎用センサを用いた遠隔	扇モニタリング		開発者名	計測検査株式会	社
試験日	令和6年 1 月 18 日	天候晴れ	気温	13.8	℃ 風速 -	- m/s
試験場所	土木研究所構内 試験	喬梁				
カタログ分類	データ収集・通信技術	カタログ 検出項目	_		試験区分 現場試	大験

試験で確認する カタログ項目

現場での動作確認

対象構造物の概要

試験方法(手順) 技術番号 CM010004

- 加速度計や傾斜計(センサは計測内容や条件に応じて、適切なセンサの選定を行う)を設置する。
- 2 センサから得られたデータをロガーで収録、A/D変換しデジタルデータに変換する。
- 3 発信機から、携帯回線を使用し、クラウドサーバにデータをアップロードする。
- **4** 【保存されたデータはクラウドサーバから必要に応じて、パソコン等にダウンロードし確認・処理する。

開発者による計測機器の設置状況

1. 機器の構成と設置

- ① 機器収納BOX
- ② M2Mルータ
- ③ データ収録用パソコン
- ④ 加速度計電源
- ⑤ 無停電電源
- ⑥ A/D変換器

写真-2 汎用センサの設置

④加速度計用電源 ⑤無停電電源

写真-3 加速度計と接続する機器

扉を閉めた状態

写真-4 機器収納BOX

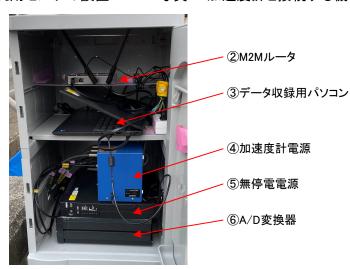


写真-5 機器構成(機器収納BOX内部)



図-2 通信方法の概要

1. データ収録用パソコンとデータ確認用パソコンのデータ比較

・加速度計(汎用センサ)からの計測データをA/D変換器により変換したデータが収録されている「データ収録用パソコン」およびクラウドサーバにアップロードされたデータを保存した「データ確認用パソコン」のデータを比較し、双方のデータが同一であることを確認する。

写真-6 データの確認

写真-7 データの比較

③データ収録用パソコン

前	扶態	更新日時	種類	サイズ
as 24-01-18_1431_0001.tdms	0	2024/01/18 14:36	TDMS ファイル	1,621 KB
as_24-01-18_1431_0001.tdms_index	0	2024/01/18 14:36	TDMS_INDEX 7P1	206 KB
as 24-01-18 1436 0002 tdms	0	2024/01/18 14:41	TDMS 774/l	1,621 KB
as 24-01-18 1436 0002.tdms_index	0	2024/01/18 14:41	TDMS_INDEX 771	206 KB
as 24-01-18_1441_0003.tdms	0	2024/01/18 14:44	TDMS 7711V	907 KB
as 24-01-18 1441 0003.tdms index	0	2024/01/18 14:44	TDMS_INDEX 771	116 KB
as 24 01-18 1444 0001.tdms	0	2024/01/18 14:49	TDMS ファイル	1,619 KB
as 24-01-18_1444_0001.tdms_index	0	2024/01/18 14:49	TDMS_INDEX 771	205 KB
as 24-01-18_1449_0002.tdms	0	2024/01/18 14:54	TDMS ファイル	1,621 KB
as 24-01-18 1449 0002.tdms index	0	2024/01/18 14:54	TDMS_INDEX 774	206 KB
as 24-01-18_1454_0003.tdms	0	2024/01/18 14:59	TDMS ファイル	1,621 KB
as_24-01-18_1454_0003.tdms_index	0	2024/01/18 14:59	TOMS_INDEX 771	206 KB
as_24-01-18_1459_0004.tdms	0	2024/01/18 15:04	TDMS ファイル	1,621 KB
as 24-01-18 1459 0004 tdms index	0	2024/01/18 15:04	TDMS_INDEX 771	206 KB
as_24-01-18_1504_0005.tdms	0	2024/01/18 15:09	TDMS ファイル	1,621 KB
as_24-01-18_1504_0005.tdms_index	0	2024/01/18 15:09	TDMS_INDEX ファイ	206 KB
as_24-01-18_1509_0006.tdms	0	2024/01/18 15:14	TDMS ファイル	1,621 KB
as_24-01-18_1509_0006.tdms_index	0	2024/01/18 15:14	TDMS_INDEX ファイ	206 KB
as_24-01-18_1514_0007.tdms	0	2024/01/18 15:19	TDMS ファイル	1,621 KB
as_24-01-18_1514_0007.tdms_index	0	2024/01/18 15:19	TDMS_INDEX ファイ	206 KB
as_24_01-18_1519_0008.tdms	0	2024/01/18 15:24	TDMS ファイル	1,621 KB
as_24-01-18_1519_0008.tdms_index	0	2024/01/18 15:24	TDMS_INDEX ファイ	206 KB

写真-8 データ収録用パソコン画面

データ確認用パソコン

写真-9 データ確認用パソコン画面

・双方のパソコンのデータを比較した結果、ファイル名、ファイルサイズ、更新日時 ともに同一であることを確認 した。 (データ通信が正常に行われていることを確認)