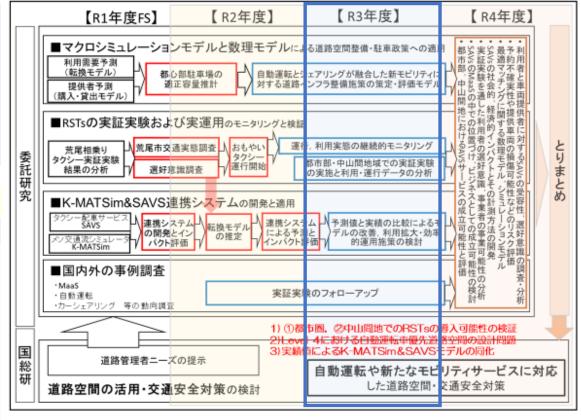
道路政策の質の向上に資する技術研究開発 2年目研究評価(中間報告)

自動運転とシェアリングが融合した新しいモビリティサービスと社会・都市・生活の未来 についての研究開発

(1)研究背景と2021年度2年目研究の内容

1. 研究背景

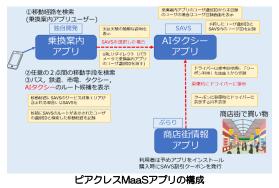
- 自動運転とシェアリングが融合した新たなモビリティサービス の導入可能性に関する理論・実証的検討の必要性
- MaaSを構成するモビリティとしての位置づけ、ビジネスとしての成立可能性の検討
- モビリティサービスとしての価値だけでなく、社会·都市·生活 の変容についても検討


シェア 提供者	車	席
個人	個人間Car-Sharing	Ride-hailing
事業者	Car-Sharing	Ride-Sharing Taxi service
個人or事業者	Shared Autonomous Vehicle service	Autonomous Ride- Sharing service

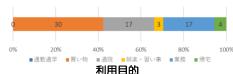
2. 2021年度2年目研究の内容

- 1) ①都市圏における乗継拠点へのアクセス, ②中山間 地での活動支援のためのRSTsの実証実験
- 2) 荒尾おもやいタクシーの利用と運行の実態, および 観測値によるK-MATSim&SAVS連携システムの同 化手法の開発
- 3) 自動運転車優先走行区間・運行設計領域を設計する ための数理モデルの構築、K-MATSimによる実道路 網へ整備効果の検証

3. 研究の実施体制


研究者氏名	分担内容
〇溝上章志 (森俊勝)	SAVs運用シミュレーションモデルの開発と適用,導入による社会経済効果の計測
嶋本 寛	SAVsに対するマッチングパターン理論モデル 開発
金森 亮 (松舘渉)	オンデマンド型RSTs実験による利用行動,システムの効率性評価分析
藤見俊夫	車両偏在による予約不可性や提供車両の損傷可 能性などのリスク評価
安藤宏恵	自動運転有優先区間設定のための数理モデルの 開発

(2)2年目研究内容とその成果


1)都市圏における乗継拠点へのアクセス、中山間地での活動支援のためのRSTsの実証実験

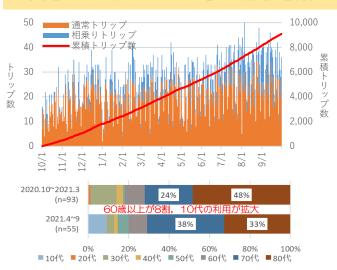
■商店街と連携した健軍地区AIデマンドタクシー実証実験

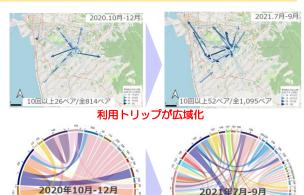
■上天草市教良木内野地区自家用有償運送サービス「のれな号」実証実験

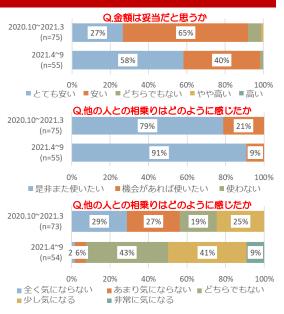
利用目的と主要OD

有償化に対する利用意向

支払意思額


非乗合トリップ数


50

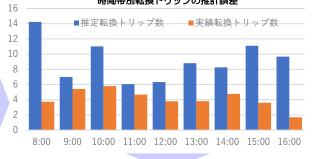

(2)2年目研究内容とその成果

2) 荒尾おもやいタクシーの利用と運行の実態, および観測値によるK-MATSim&SAVS連携システムの同化手法の開発

■荒尾「おもやいタクシー」の利用/運行、および利用者の実態とその評価

■観測値によるK-MATSim & SAVS連携運用シミュレーションの同化手法の開発

K-MATSim&SAVS連携運用シミュレーションシステム



K-MATSimの転換モデル

利用トリップが多様化

転換	説明変数	パラメータ (<i>t</i> 値)		
する	料金(円)	-0.008 (7.46)		
	同乗者の選択可能ダミー(同性のみ=1)	0.643 (2.26)		
	到着予定時刻からの到着遅れ時間 (分)	-0.091 (2.75)		
	年齢 (歳)	0.066 (3.81)		
	現利用手段による所要時間(分)	0.034 (2.96)		
	性別ダミー (男性=1)	1.107 (3.20)		
	現利用交通手段ダミー (車=1)	2.264 (2.96)		
	(公共交通=1)	2.615 (3.20)		
	自宅から最寄りのバス停までの距 (km)	0.537 (1.77)		
しない	定数項	3.246 (2.03)		
		312		
尤度比		0.218		
 的中率		0.724		

時間帯別転換トリップの推計誤差

$$max: L = \prod_{k=1}^{K} p_k^{x_k} \cdot (1 - p_k)^{T_k - x_k}$$

3)自動運転車優先走行区間・運行設計領域を設計するための数理モデルの構築、K-MATSim による実道路網での整備効果の検証

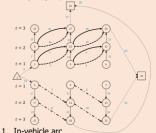
■モデル1:ライドシェアリングを考慮した利用者均衡問題

時空間ネットワーク上に おける主体ごとの交通量 とシェアリングが成立す る場合の運賃を求める利 用者均衡問題

数理モデル

$$Min:Z(\mathbf{x}) = \sum_{s \in S} \sum_{a \in A} c_a^s x_a^s$$
 $subject to:$
$$\sum_{a \in IN(s)} x_a^s - \sum_{a \in OUT(s)} x_a^s = -q_{is}, \forall i \in R, s \in S$$

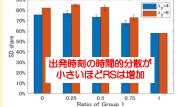
$$\sum_{a \in IN(s)} x_a^s - \sum_{a \in OUT(s)} x_a^s = \sum_{r \in R} q_{rs}, \forall s \in S$$


$$\sum_{a \in IN(i)} x_a^s - \sum_{a \in OUT(i)} x_a^s = Q_{rs}, \forall s \in \mathbb{R}$$

$$\sum_{a \in IN(i)} x_a^s - \sum_{a \in OUT(i)} x_a^s = 0, \forall s \in S, i \in \{I - R - S\}$$

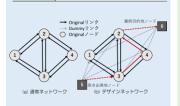
$$\sum_{s \in S} \left(x_{a_{l,t}}^{s} + x_{a_{l,t}}^{s} \right) \leq v_{l}^{t}, \forall l \in L, t \in T$$

$$\sum_{s \in S} x_{a_{l,t}^R}^s \le \kappa \sum_{s \in S} x_{a_{l,t}^{RD}}^s, \forall l \in L, t \in T$$


$$\sum_{s \in S} x_{a_{l,t}}^{s} \le \sum_{s \in S} x_{a_{l,t}}^{s}, \forall l \in L, t \in T$$
$$x_{a}^{s} \ge 0, \forall a \in A, s \in S$$

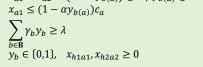
1. In-vehicle arc

$$c_a^s = \begin{cases} \Delta t & \left(n(s) \neq n(IN(a)) \right), \forall a \in A_3 \\ 0 & \left(n(s) = n(IN(a)) \right) \end{cases}$$

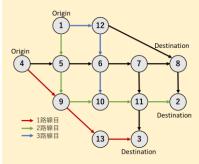


■モデル2:普及率既知の場合の自動運転車優先走行レーンの設置区間決定問題

Jンクごとの交通容量 専用レーン設置による普通車の

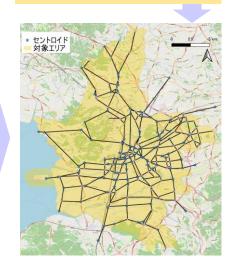

設定と解ネットワーク

パラメータ 専用レーン設置による自動運転車 専用レーンの連続距離下限値 リンクごとの普通車交通量 リンクごとの自動運転車交通量 専用レーン設置デザイン変数



数理モデル

$$\begin{split} & \underset{y,x}{\text{Min:}} \sum_{a_1 \in \mathbf{A}_1} \gamma_{a_1} x_{a_1} + \sum_{a_2 \in \mathbf{A}_2} \gamma_{a_2} x_{a_2} \\ & \text{subject to:} \\ & \sum_{a \in In(n)} x_{h_1a_1} - \sum_{a \in Out(n)} x_{h_1a_1} = \sum_{d \in Out(n)} v_{h_1d} - \sum_{o \in In(n)} v_{h_1o} \\ & \sum_{a \in In(n)} \mu x_{h_2a_2} - \sum_{a \in Out(n)} \mu x_{h_2a_2} = \sum_{d \in Out(n)} v_{h_2d} - \sum_{o \in In(n)} v_{h_2o} \\ & \sum_{b \in In(n)} y_b - \sum_{b \in out(n)} y_b = \begin{cases} -1 \ if \ n = s \\ 1 \ if \ n = t \end{cases} \forall n \in \mathbf{N} \\ & 0 \ otherwise \\ & x_{a_1} + x_{a_2} \leq (1 - \alpha y_{b(a)}) c_a + \beta y_{b(a)} c_a \end{split}$$



最適設計結果

ケース		1	2	3	4	5
	普通車容量減少率	0.7	0.7	0.5	0.5	0.5
設定値 自動運転車容量増加率		2	1.5	1.5	1.5	1.5
	優先走行ライン本数	1	1	1	2	3
目的関数値		910	925	931	918.5	918.5

■K-MATSimによる実道 路網での整備効果の検証

