2025.9.25 国土交通省主催・スマートシティ推進のための官民連携推進フォーラム(オンライン形式)

3D都市モデルを活用した温熱環境シミュレーションと、 歩行者回遊状況の分析

株式会社構造計画研究所 エンジニアリング営業2部 小野 晋太郎

構造計画研究所について(会社概要)

構造計画研究所 KOZO KEIKAKU ENGINEERING Inc.

会社概要

会社名 株式会社構造計画研究所

設立年月日 1959年5月6日

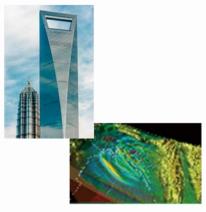
代表者 代表取締役社長 湯口 達夫

資本金 1,010百万円

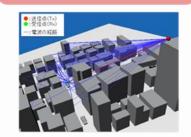
従業員数 665人(2024年7月1日現在)

所在地 東京、大阪、名古屋、福岡、熊本 上海、シンガポール、スペイン

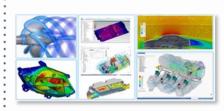
事業内容 エンジニアリングコンサルティング/プロダクツサービス


http://www.kke.co.jp

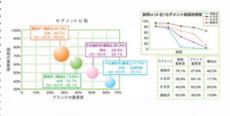
構造計画研究所について(事業の広がり)

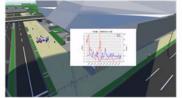


安心安全を守る



情報を確実に 伝える





モノづくりを 支える

科学的に決める

http://www.kke.co.jp

KKEと「PLATEAU」の関わり

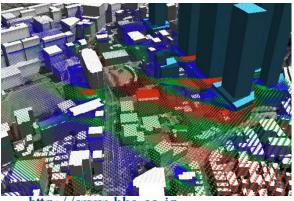
• 令和4年度より、3D都市モデルを活用したユースケース開発に参画

表 KKEが参画したユースケース一覧

年度	ユースケース名 ※()内は実証地域	JV等
R4年度	歩行者移動・回遊行動シミュレーション (東京都新宿区)	KKE 大成建設
R4年度	雪害対策支援ツールの開発 (兵庫県朝来市)	ウエスコ KKE
R5年度	精緻な土砂災害シミュレーション (岡山県備前市)	ウエスコ KKE
R5年度 R6年度 R7年度	熱流体解析に関する大規模シミュレーション (神奈川県横須賀市・埼玉県さいたま市・埼玉県熊谷市(予定))	KKE
R6年度	不動産敷地内のグリーンインフラ推進による、温熱環境と人流への影響の可視化 (森ビル株式会社)	KKE 朝日航洋
R7年度	AIを活用した環境シミュレーションの高速化技術の開発等業務 (兵庫県朝来市(予定))	KKE ウエスコ
R7年度	AIを活用したマルチエージェントシミュレーション技術の開発等業務 (愛知県豊橋市(予定))	KKE

熱流体解析に関する大規模シミュレーション (Webシステム概要)

温熱環境Sim



- □ 3D都市モデルを活用した熱流体シミュレーションの実行と可視化を実施可能なWebシステムを開発
- □ ノンエンジニアでも熱流体解析を実施可能とすることで、データを活用したまちづくりを推進

熱流体シミュレーション結果の比較表示

複数の熱流体解析結果の比較が可能

スコープ

- 3D都市モデルから建築物の空間属性・ 主題属性(用途)、土地利用区分、地形と いった情報を取得しつつ、Web上で熱 流体解析を実施可能な熱流体シミュ レーションシステムを構築
- シミュレーションの条件構築・実行・結果 可視化に至るまで、一連の熱流体解析 に係る業務フローを内製化できる機能 を開発

ソリューション

- 地方公共団体職員等のノンエンジニア 属性のユーザーでも大規模なシミュ レーションを容易に利用できる環境を 提供し、データに基づく政策立案の促進 を目指す
- 都市再開発やヒートアイランド対策、熱中症対策や学校等文教施設計画などの分野におけるデータ活用を推進し、高層建築物の建設に伴う風況や温熱環境の変化について、事前の効果検証を可能にする

http://www.kke.co.jp

開発:株式会社構造計画研究所、一般社団法人社会基盤情報流通推進協議会 協力:横須賀市、東京工業大学 稲垣厚至助教、株式会社ウエスコ

熱流体解析に関する大規模シミュレーション (課題解決のアプローチ)

温熱環境Sim

1年目(R5) ※システム実証:横須賀市 2年目 (R6) ※システム実証:横須賀市・さいたま市

3年目 (R7) ※システム実証予定:横須賀市・さいたま市・熊谷市

三次元熱流体解析 (CFD) ソフトOpenFOAM を用いた熱流体シミュレーションシステムの開発

-基本機能の実装-

- 3D都市モデルの登録・編集
- シミュレーションモデルの登録・編集
- シミュレーション実行・結果可視化
- 解析ソルバーの登録・編集

入力条件・解析条件の機能追加

- 風向きを4→16風向に細分化
- 解析条件として湿度を追加

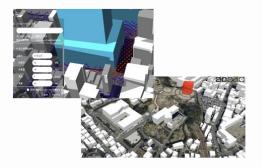
3D都市(建築物)モデル編集機能の拡張

• 地図上のGUI操作により架空の建築を建築物モデルとして追加・削除できる機能

並列可視化機能

• 2つのシミュレーション結果を並べて表示する機能等追加

植生モデルへの対応


• 単独木/植被を本システムで取り扱う

3D都市(植生)モデル編集機能の拡張

地図上のGUI操作により架空の植生を植生モデルとして追加・削除できる機能

解析エンジンの精度向上 - 「植生乱流モデル」の組み込み-

• 樹木が空気の流れに与える影響を適切に評価できるよう、国土技術政策総合研究所により開発された「植生乱流モデル」を解析エンジンに組み込む

- より学術レベルの高精度な解析に近づくために、 細かい粒度の解析条件を設定できる必要がある
- 都市再開発による温熱環境変化の事前検証 可能とするため、建設予定の建築物を評価対 象として追加できる機能性が欲しい
 - → 都市計画実務への活用促進
- 異なる解析条件に基づくシミュレーション結果を 同一画面で比較することができず、施策前後の 温熱環境の変化を視覚的に把握するには不便 である

- 植生/植栽による緑陰等の影響で体感として涼しいはず の場所について、実感と異なる解析結果となっているケー スがあるとの指摘があった
- 架空建物設定/既存建物削除のより細やかな操作性など、UI/UXに係る改善要望がユーザから挙がった

課題

開発

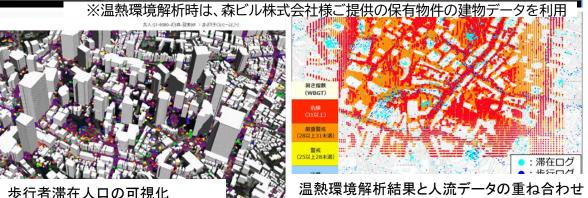
概要

http://www.kke.co.jp

[参考]熱流体解析に関する大規模シミュレーション (解析条件設定例)

温熱環境Sim

地盤高(地形)	 PLATEAUの地形データ(LOD1)をOBJ形式に変換して使用 地形データは土地利用区分により分割 ①公園、②水面、③道路、④緑地、⑤その他
建物条件	 PLATEAUの建物データ(LOD1)をOBJ形式に変換して使用 建物データは建築物の主な使用区分により分類 ①事務所、②商業施設、③宿泊施設、④住宅、⑤教育施設、⑥その他
計算条件	 解析ソルバ: OpenFOAM搭載ソルバの一つ(buoyantSimpleFoam)を利用 解析メッシュ: 1 (粗い)
境界条件	 東西南北:前ページ地図に示す1km四方 底面:海抜-1m 上空:海抜300m
外力等環境条件	 風向: 西から東向き 風速: 4m/秒 外気温: 32℃ 日射: 7月下旬 14時頃 湿度: 70%


不動産敷地内のグリーンインフラ推進による、 温熱環境と人流への影響可視化(プロジェクト概要)

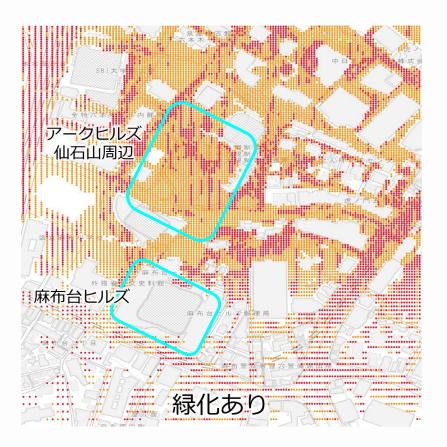
- -O-Point
- 緑化の有無ごとに不動産敷地内及び周辺の温熱環境をシミュレーションし、温熱環境と人流を比較す るビューアを開発
- **緑化と人のにぎわいの相関、さらに不動産価値向上への寄与を考察**し、定量評価による緑化施策の 意思決定支援を目指す

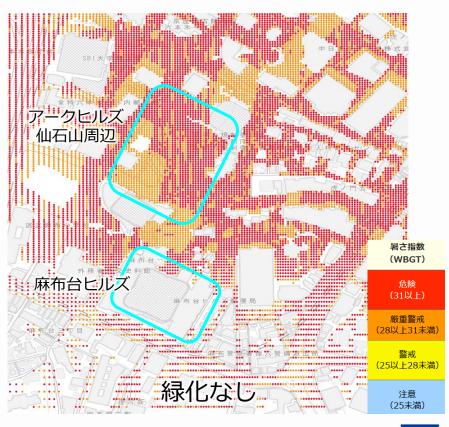
緑化後(左)と緑化前(右)の暑さ指数の比較

温熱環境解析結果と人流データの重ね合わせ

スコープ

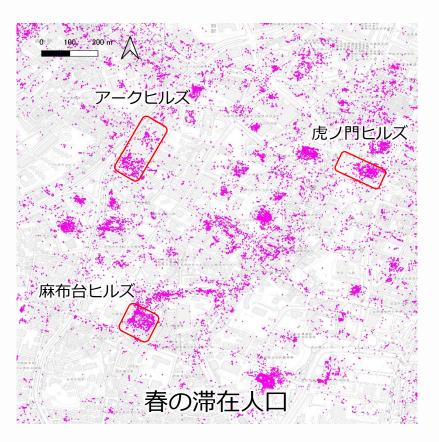
- 3D都市モデルを活用した温熱環境シ ミュレータ(既存)をベースに、緑被デー タ等の解析インプットデータの精緻化や 歩行者移動実態データの可視化機能の 開発を実施
- 緑化とにぎわいの相関関係を分析する ことによって、緑化施策の不動産価値 向上への寄与度を考察。分析・考察結果 を踏まえ、定量評価の妥当性、システム の有用性を検証

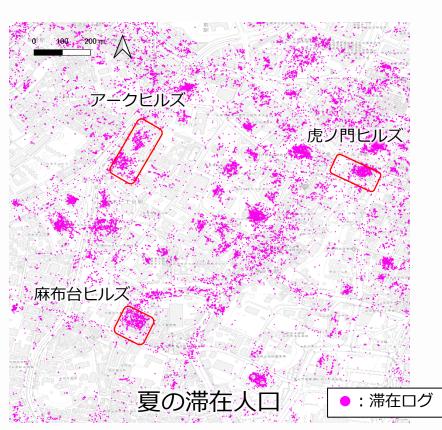

ソリューション


- 緑化による温熱環境の改善状況を定量 評価し、施策検討・評価の高度化に寄与
- 今後、本プロジェクトで明確にできな かった温熱環境の改善が人流に与える 影響を検証。検証結果をソリューション に反映し、民間デベロッパー自らによる シミュレーションおよび緑化施策検討の 実現を目指す

不動産敷地内のグリーンインフラ推進による、 温熱環境と人流への影響可視化(温熱環境の結果の比較例)

夏の12時台の温熱環境解析の結果(WBGT)において、緑化の有無に よって全体的にWBGTが低下している(暖色が薄くなっている)ことが わかる。





不動産敷地内のグリーンインフラ推進による、温熱環境と人流への影響可視化(滞在人口の可視化)

- 春・夏の12時台の滞在ログを比較すると、分布に大きな違いは見られ ないが、全体的に夏の方が多い結果となっている。
 - 2024年4月30日~2024年5月5日、 2024年8月6日~2024年8月11日を対 象としている。

温熱環境シミュレーション及び歩行者回遊分析の、 行政施策への活用イメージ

【温熱環境Sim】

- 都市部のヒートアイランド対策における合意形成ツールの一つとして
- 行政施設跡地の活用(広場の造成等)検討時の環境影響の事前検証
- 市街地再開発事業に伴う環境影響の事前検証に活用する
- <u>3D結果ビューワで「クーリングシェルター」等を明示</u>しつつ、<u>対象施設周辺の温熱分布を視覚的に確認</u>で きるようにする
- 条例等に基づく各種緑地保全の効果検証に活用する
- スポーツイベント等の熱中症対策検討に活用する

【温熱環境Sim×歩行者回遊性分析】

- 公園整備や緑地造成が歩行者回遊に与える影響の評価
- <u>河川沿いの回遊性向上施策の効果</u>の検証
- <u>植樹が歩行者回遊に与える影響</u>の評価
- 回遊実態に合わせた人工日除けや、環境状況に合わせた散水など、**即時的・動的な熱中症対策のオペレー** ションの参考情報として活用する
- 既設気象センサの取得値(地点情報)を活用した歩行者回遊ルートの提案
 - ⇒ex. 解析条件として気象センサ取得値を利用⇒街区単位の温熱環境面的分布の算出⇒涼しい回遊ルートの提案