
全国自治体のインフラメンテナンス 見える化の方向性

全国自治体のインフラメンテナンス見える化の方向性

目的

市町村別のデータを用いて、インフラメンテナンスに関する実態を 見える化

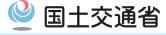
(例:インフラの量・質、予算、自治体の体制、地元事業者の体制、メンテナンスの取組状況等)

- ①各自治体に危機意識を自分事化してもらう
- ②群マネ手引きのターゲットを抽出する(自治体の類型化)

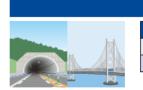
想定される 活用シーン (例)

- ・自治体職員が住民や議会へ説明する資料
- ⇒他の自治体と比較したランキング、レーダーチャート、マップ等

用シーン ・自治体職員が施策検討する際の判断材料


- ⇒近隣自治体の状況を踏まえた連携方策の検討 等
- 自治体類型に応じた手引きの作成⇒自治体を類型化し、各課題に応じた処方箋を提示等
- * 分析フロー(イメージ)

活用可能な 市町村別データ の整理


自治体規模別の傾向分析 (指標のマクロ分析、 散布図分析等)

各自治体の強み・弱みの 見える化

見える化参考事例①(土木学会:インフラ健康診断書)

インフラの健康状態

施設	橋梁	トンネル	路面(舗装)
2024 年度評価	В →	C →	c →
2020 年度評価	C 🗽	D 🐿	C 🐿

農業水利部門					
施設	農業用ダム	頭首工(取水堰)	基幹的水路	その他施設	
2024 年度評価	B →	ВД	開水路:B 管水路:C→	○ →	

インフラ健康診断 2024 より新設

鉄道部門

施設	橋梁	トンネル	軌道
2024 年度評価	B → (−)	B ⇒ (−)	B ⇒ (−)
2020 年度評価	B →	B →	B →

电刀印		
施設	発電用ダム本体	水圧鉄管
2024 年度評価	A →	B →

インフラ健康診断 2024 より新設

港湾部門

施設	係留施設 (岸壁や桟橋など)	外郭施設 (防波堤など)	臨港交通施設 (道路、橋梁、 トンネルなど)
2024 年度評価	C 🐿	C 🐿	C ⅓
2020 年度評価	c →	C→	_

小庭 的		
施設	管路	浄水施設
2024 年度評価	D→	A →
2020 年度評価	€	_

河川部門

施設	河川(堤防)	河川(構造物)	ダム (本体)	ダム(貯水池)
2024 年度評価	C 🗽	D 🗽	В 🔪	В 🔪
2020 年度評価	C 🗽	D 🗽	В 🔪	_


1 13 102411 3		
施設	管路施設	
2024 年度評価	В →	
2020 年度評価	В 🔪	

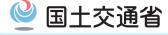
※各部門の健康診断結果の詳細は、それぞれのページで記載しています。
※健康診断結果は、各部門や各部門内の施設に求められる機能や評価項目・基準などが異なりますので、健康状態の善し悪しを直接比較できません。

水道郵門

下水道部門

見える化参考事例②(土木学会:道路橋の健康状態に関する市町村別評価)

各市町村にある全ての橋梁の損傷度の平均を算定し、1,499市町村を順位付けしています。そして、

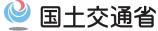

- 1. ■青 上位25%(損傷度が小さく健全な橋梁が多い)(375自治体)
- 2. ■黄色 中位50% (749自治体)
- 3. ■赤 下位25% (損傷度が大きく劣化橋梁が多い)(375自治体)

で描画 (点検橋梁数が50橋以下の市町村は白地 (順位付けから除外))

損傷度は、定期点検における市町村別の健全性診断結果から、判定区分Ⅱ、Ⅲ、Ⅳの健全度の違いを点数化し、それぞれの橋梁数を考慮して、土木学会で独自に設定した式により算出しています。たとえば、全ての橋梁が健全(判定区分Ⅰ)と診断された場合は損傷度 0 に、四分の 1 の橋梁が則とⅣと判断された場合は損傷度 0.25 となります。

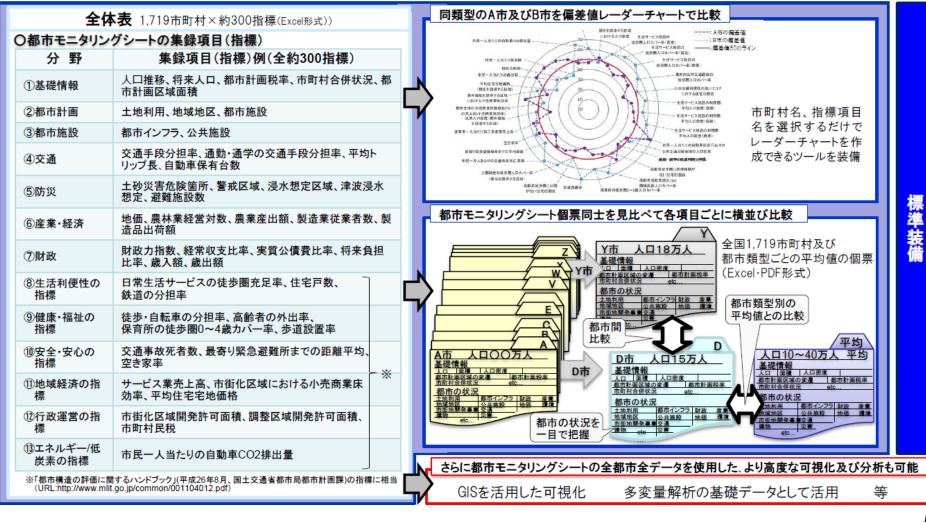
	区分	状態
1	健全	構造物の機能に支障が生じていない状態。
П	予防保全段階	構造物の機能に支障が生じていないが、予防保全の 観点から措置を講ずることが望ましい状態。
Ш	早期措置段階	構造物の機能に支障が生じる可能性があり、早期に 措置を講ずべき状態。
IV	緊急措置段階	構造物の機能に支障が生じている、又は生じる可能性 が著しく高く、緊急に措置を講ずべき状態。

見える化参考事例③(東北大学:1橋を支える人口)


地方		+	+ 10	橋梁数			1橋あたりの人口		
	Л	人口	県直轄	市町村	県内総数	県直轄	市町村	県内総数	
北	海	道	5,381,733	5,621	18,989	24,610	957	283	219
東		北	8,982,807	15,640	51,237	66,877	574	175	134
関		東	42,995,031	16,168	66,583	82,751	2,659	646	520
北		陸	5,311,340	11,910	37,894	49,804	446	140	107
中		部	16,149,070	18,306	86,182	104,488	882	187	155
近		畿	22,541,298	20,766	78,556	99,322	1,085	287	227
中		王	7,235,359	16,458	70,594	87,052	440	102	83
四		田	3,845,534	9,037	34,473	43,510	426	112	88
九		州	14,449,895	20,502	78,816	99,318	2,858	183	145
全		国	127,094,745	134,408	526,454	660,862	946	241	192

^{◆9}地方のうち,6地方は全国平均以下

【橋梁数】各県道路メンテナンス会議・公表情報より 【人口】日本国勢調査(2017年度)より


[◆]関東地方(最大)と中国地方(最小)では6.27倍の較差

見える化参考事例4(都市局:都市モニタリングシート)

都市モニタリングシートの構成と特徴

- 〇様々な統計や調査に散在する都市に関係するデータを一つのシート(全体表)に集約することで、多分野にわたる複数の指標を用いた分析や見える 化が可能。
 - ※RESASでは対応していない都市計画や都市施設等都市構造に関するデータも集録。様々なデータとをクロスさせた分析も可能。
- ○簡易に使えるレーダーチャート作成ツール及び市町村ごとに作成された個票を標準装備。

