÷	-1.1.1.	-						L., 1 15	A Section	ストノノルことにノールド住の八さな順番(正任
整理	該当トラブル		シールド	土被り	地下	地質概要	地表部の	地表部へ	トラブル発生状況	トラブル対応・工夫事例
番号	①-1切羽圧の管理		径	(m)	水位		土地利用	の予期せぬ		
	①-2泥水の比重管理		(m)		(m)		(道路、	影響		
	③排土量の管理		~ \phi 5		()		住宅地等)	(有、無、		
	④-1掘進停止再開(支障物)	′				住七地寺/			
	④-2掘進停止再開(想定外	地盤)	<i>φ</i> 5~10					記載なし)		
	その他(騒音、添加材・	裏込め材漏出等)	<i>φ</i> 10∼							
1-1	①-1切羽圧の管理	③排土量の管理	φ5~10	21.0	GL-1.8	発進~300m 区間	道路	無	①発進~300m 区間	①発進~300m 区間
				~28.0		N値4以下の軟弱な粘土 層			・地下水位がGL-1.8m と高い上に現場が護岸から近く、満潮時に海水の影響を直接受けた。 ・掘削土の取込み量増加が続いたため、泥水圧を上昇させたが解決に至らず、一時切羽保持が	< 泥膜の強化 > ・地盤中に微細粒子 (バインダー分)を含んでいたことから、粘土やベントナイトの補充は行
						300m〜到達区間 洪積砂質土層(トンネ ル上部は、砂層や粘土				わず、切羽保持のために増粘剤を添加した。 ・増粘剤は、泥水1m3 あたり0.2~1kg (0.02~0.1wt%) となるよう添加した。 ・対象とする泥水は、調整槽、配管、チャンバー、土砂分級機アンダータンクの各容量(概
						層、砂礫層等が表層部			[· · · · · · · · · · · · · · · · · · ·	算)を足した値とした。
						より堆積した多層構				②300m~到達区間
						造)			・満潮時は大量の海水が混入し、泥水が激しく凝集した。	<凝集対策>
										・管理基準値を越えた粘性や、凝集に伴い増加したろ過水量は、ソーダ灰泥水1m3 あたり0.5~ 2kg (0.05~0.2wt%) 添加して改善した。
										Mg2+) が泥水中の粘土やベントナイトと化学的に結合することが原因である。 ・ソーダ灰での粘性改善が難しい場合、新液や清水添加、また掘進開始および終了前30 分間に
										バイパス運転を行い、除去し切れなかった土砂の分離を行った。 <泥膜の強化と耐イオン性の向上>
										・海水の混入防止(= 泥膜の強化)および泥水の耐イオン性を高めるために、増粘剤を添加した。
										・増粘剤は、泥水1m3 あたり0.2~1kg(0.02~0.1wt%)添加した。
1-2		③排土量の管理	φ5~10	9.9	GL-1.3	・海外の特殊地盤(ミック	道路(歩道	有(地表面沈	①切羽圧が管理値を逸脱および排土量が管理値を逸脱	①の対策
				~42.5	~1.8	スフェース)の事例	橋、地下鉄、	下)	・岩盤と軟弱粘性土とのミックスフェースの土質を掘進時に切羽管理圧低下が生じた。粘性土	・掘進管理の排土量管理は容積管理(偏差流量)と重量管理(ベルコンの重量計)の2 種類で
						・日本でも同様な地盤	共同溝等の近		部分の取り込み過多によるものが原因であり、その対処として一時的に充填材をチャンバー内	対処したが、一部で管理値の逸脱を防止できなかった。この対策については精度向上に努め、
						も東北や中部地方にも	接施工多数)		の充填で対処した。	10~20 リング毎の土量変化を捉えるよう徹底的な管理を追加した
						みられる			②排泥管の詰まり、管理値を超過した沈下	・泥水式の送泥材は掘削土を再利用して調整していたが、比重。粘性が不適合だったので購入
						・最大200~400Mpa の			・排泥管の詰まりを解消するために、チャンバー内を圧気作業で実施中に地表面沈下が発生し	した泥水に置き換えて対処した。
						花崗岩掘削と粘性土、			 た。岩盤内での作業で圧気圧を小さくしたため、水の流れによる細砂を引き込みしたことが原	②の対策
						流砂現象を伴う細砂			因と考えられる。	・圧気圧を高め、さらに地盤内に注水し(リチャージウエルがシールド路線に約50m 間隔で事
										前に設置)、沈下の解消し、薬液注入で地盤内の強化を実施した。
1-3		④-2掘進停止再開(想定	φ5~10	12.8	GL-2.0	(シールド断面)	道路,	有(歩道部で	・2018 年8 月、距離程2,895m地点において、地上歩道部で泥水が流出するトラブルが発生。	■地盤の再調査
		外地盤)				N値3~29 の沖積砂質シル	住宅地	の泥水流出、	・トラブル停止約2ヶ月後の再発進以降、2,900m付近で地表面沈下の累計量が一次管理値であ	・トラブル個所以前において切羽管理、泥水管理に特段の不具合がなかったため、泥水流出、
						├層		地表面沈下)	る10mm に達し、その後、一時再開したものの管理値に達する測点が多数発生し、10 月、作業	地表面沈下増大の原因として、地盤の緩みを想定し、追加の地盤調査を実施。着目点は、地盤
						(シールド上部)			時に距離程2,950m、2,955mのシールド中心地点で地表面沈下の累計が14mmに達しシールド掘	強度(N値)、土質構成、粒度分布、透水性、文献調査(地歴調査)。
						N 値30~45 の沖積砂礫			進を停止。	■泥水品質の改良
						層が介在				・地盤調査より、当初想定よりも全体的に緩い地盤であることが判明したため、原因を泥膜形
										成の不具合、逸泥増大による地盤の緩みの誘発と推定。その対策として、泥水品質の改良とモ
										ニタリングを実施した。また、泥水品質維持のため、地上泥水プラントや、坑内泥水輸送設備
										を増強した。
										■シールド通過時の可塑状充填材による地山保持と裏込め注入の増加
										・シールドのオーバーカットによる通過中の地盤沈下を防止するため、地山とシールドとの空
										隙に可塑状充填材を注入した。注入はシールド前胴に装備している外周部への注入管から実施
										した。
										■地表面変状観測の強化(頻度増大と人員態勢)
										・道路上にて地表面沈下測量の頻度を大きくし、掘進と地表面沈下の相関をリアルタイムで把
										握した。
1-4	†		~ \phi 5	3.0	GL-2.5	表土、砂質土、腐植土	公園	有(公園での	・丘陵部(土被り10m)から谷部(土被り3m)に入ったところで切羽圧力の変動が激しく、切	・泥水切羽圧は、初期設定圧(主動土圧、緩み土圧+水圧+変動圧)に対して、実掘削時の偏
								泥水の流出)	羽バランスが崩れ泥水が上部の公園の砂場に溢れた。	差流量、乾砂量、残土排出量等から地山に適した切羽水圧にフィードバックして設定すること
										が多い。また、泥水比重は基本的に送排泥管に設置した密度計と、調整槽における泥水採取に
										よる比重計測で把握している。管理については、送泥水の比重だけではなく、粘性(ファンネ
										ル・YV)、砂分、濾水量、PH等を地質特性に合わせて管理値を決めて管理している。
-										

±4.7⊞	=+ \1/ 1>	S	1 44 0	Jul. —	北縣柳本	11L ± 57.5	加上士 並		
	該当トラブル	シールド			地質概要	地表部の		トラブル発生状況	トラブル対応・工夫事例
番号	①-1切羽圧の管理	径	(m)	水位		土地利用	の予期せぬ		
	①-2泥水の比重管理	(m)		(m)		(道路、	影響		
	③排土量の管理	$\sim \phi$ 5				住宅地等)	(有、無、		
	④-1掘進停止再開(支障物)	φ5~10					記載なし)		
	④-2掘進停止再開(想定外地盤)その他(騒音、添加材・裏込め材漏出等)	φ 10~							
1-5		φ5~10	11.4	GL-1.7	洪積砂礫層(N 値21~	送政	記載なし	・洪積砂礫層の透水係数が大きく(概ね10-3cm/s オーダー)施工時に、作泥により泥水の比	・ 海沢はよのもなに沢北に動へら横掛けまたが加配会! -
1-5	⑤-2-泥水の比里自注	φ 5~10	11.4		50以上) 中〜粗砂、10〜70mm 程度の亜円、亜角礫が 主体Φ100〜300 mmの玉 石が混入	,但时	心戦なし	重、粘性を高くして掘削した (比重1.2、粘性:30~35 秒) が、泥水が逸泥し、礫によるチャンパー・排泥系統の閉塞が繰り返し発生した。	
1-6	③排土量の管理 ④-1掘進停止再開(支障物)	φ5~10	17.0 ~57.0	_	粘土・シルト(N 値3~ 50) 砂(N 値16~50) 礫(N 値25~50)	道路		・シールド掘進中に、切羽付近で土塊(人工物)が排泥管に詰まり、泥水の環流が不能になった。環流不能を解消するため、排泥管に詰まっている土塊を除去しながら進めたが、地上において地盤変状が発生した。排泥管の詰まりを解消するために、流体設備にて、泥水の流れを正送、逆走の操作を繰り返し行ったことによる土砂の取り込み過多が原因であった。	ローク毎の管理に加えて、シールド機停止時も管理できるように、時系列データでも管理する
1-7	④-1掘進停止再開(支障物)	φ10~	13.7 ~34.1	GL-6.0 ~12.0	砂質土・粘性土・礫層	道路	無	・シールド掘進に先行して平行して存在していた既設とう道(φ3m)が撤去されていたが、その外周に薬液注入用の鋼管(φ40mm 程度)が残置されており、シールド掘進中にこの支障物を取り込み、排泥管の閉塞を繰り返した。 注入管が出現した区間:約500m 掘進一時停止:約200 回	
1-8		φ5~10	25.3 ~38.0	GL-2.0	砂質シルト(N値2~ 8) 埋没段丘層にはメタン ガスが溶存	道路	記載なし	認後、地上からの撤去は困難と考え直接切削することにした。	・支障物(H-350、切削部長さL=不明、約12本)を通常の切削ビットで切断しながら再発進した。本体構造物には影響がないことは確認している。 ・停止期間は調査と協議を含めて約2週間、残置杭切削をするにあたっては、地表部の路面計測と共に監視員を配置し、シールド機機内との通信連絡を可能にし、地上と坑内との連絡体制に留意した。到達時に切削ビットの摩耗・損耗状況を確認した。多くのビットが大きなダメージを被っていたが、軟弱地盤の掘進という点が幸いした。 ・地中構造物の本体部の図面は残っているが、構築に伴って使用された仮設部材が表記されていないことがよくある。
1-9		~ φ5	17.0	GL-3.0	砂質土 (N値10~50以上)	道路	無	かるような異音と振動があったので、掘進を停止した。結果として、当シールドの下部に施工された既設シールドの施工時に設置された観測孔(鋼管 ϕ 250mm)であった。 ・なお、事後対策を含め、本トラブルによる道路沈下等の地上への影響は、管理値内で収まった。	傷を与えかねないので、既設シールドに影響のない位置で切断して撤去するように要請があっ

整理	該当トラブル	シールド	土被り	地下	地質概要	地表部の	地表部へ	トラブル発生状況	トラブル対応・工夫事例
番号	①-1切羽圧の管理	径	(m)	水位		土地利用	の予期せぬ		
	①-2泥水の比重管理	(m)		(m)		(道路、	影響		
	③排土量の管理	~ \phi 5		, ,		住宅地等)	(有、無、		
	④-1掘進停止再開(支障物)	,				一下(2)64/			
	④-2掘進停止再開(想定外地盤)	φ5~10					記載なし)		
	その他(騒音、添加材・裏込め材漏出等)	<i>φ</i> 10~							
1-10	④-2掘進停止再開(想定外地盤)	φ10~	13.7 ~34.1	GL-6.0 ~12.0	砂質土・粘性土、礫層	道路	無	り、地山の緩みまたは空洞があるものと予想された。	常の裏込め注入量にこの体積を加えてリングごとの目標注入量を設定し、裏込め注入を行っ
1-11		~ \$ 5	19.2	GL-1.3	風化礫岩(N値50以上)	道路	有(路面変状)	・風化礫岩層を掘進するため、ローラカッタを装備し、排泥管より小さく破砕してシールド機に取り込む計画とした。掘進時には、幾度か巨礫に遭遇し、ローラカッタで破砕したが、チャンパー内、クラッシャー、排泥系統に礫による閉塞が発生し、逆送や排泥管や機械の解体により閉塞した礫を撤去した。 ・掘進ルート上の道路に路面変状が見られたため、舗装を撤去したところ、舗装下に幅3.3m、長さ3.9m、深さ2.1m の空洞が確認された。ボーリングにより地盤調査したところ、局所的に軟弱層があることが判明した。閉塞による切羽圧の変動により軟弱層部が緩み、変状につながったと考えられる。	ヘッドを補修した。 ・カッタ補修後、礫による閉塞は発生したが、都度閉塞を解除し、問題なく掘進を完了した。
1-12		~ \$\phi\$ 5	50.2 ~57.1	GL-7.0 ∼8.0	粘土混じり砂礫〜細砂 〜硬質粘土・砂混り粘土 〜砂礫・粘土混じり砂礫 〜シルト質固結粘土		記載なし	・初期掘進直後に、巨礫による、チャンバー内、スクリューコンベア内の閉塞が発生した。	・チャンバー内に薬液を注入、止水を行ったうえで排泥管内の巨礫を除去し、次にチャンバー 内に高圧水を噴射させ巨礫を除去した。
1-13		~ <i>φ</i> 5	27.0	GL-3.0	洪積砂礫層(N値50以 上)	住宅地	記載なし		・締固められた礫をほぐすため、排泥管にバルブを増設し、高圧噴射ロッドをチャンバー内まで差し込んで高圧の泥水を噴射したところ、礫がほぐれ、掘進を再開することができた。
1-14		~ <i>φ</i> 5	河川横断 部7.3 最大21.4		沖積の砂質土、砂礫土であり、N値が20~50程度の概ね硬質な地盤である。河川氾濫地帯であった事から、地質が湾曲している事や所々に腐植土や粘性土の薄層狭在が認められた。	道路(農道、		・掘進開始直後(河川横断)から想定以上の大きさの礫の出現により、排泥管の閉塞が頻繁に発生した。閉塞時の急激な切羽圧の上昇により地表面に泥水が噴出する事象が発生し、周辺地盤を乱す事による地表面沈下等の影響が懸念された。 ・計画路線上で大口径調査ボーリング(φ150)を実施し試料を確認した結果、掘進対象土は玉石混り砂礫層であり当初想定と異なり、礫を多く含有(礫率65.6%)する地層である事が判明した。	(インナカッターの配置、面盤に礫制限版(スリット)を追加) 2. 排泥管のインチUP
1-15		~ <i>φ</i> 5	8.0 ~15.7	GL-1.5	沖積砂層(シルト混り 砂 N値4~17、シルト質 砂 N値3~10)、砂分 70%、細粒分30%、透 水係数4.53×10-6m /sec		記載なし		

	該当トラブル	シールド	土被り	地下	地質概要	地表部の	地表部へ	トラブル発生状況	トラブル対応・工夫事例
番号	①-1切羽圧の管理	径	(m)	水位		土地利用	の予期せぬ		
	①-2泥水の比重管理	(m)		(m)		(道路、	影響		
	③排土量の管理	~ \$ 5				住宅地等)	(有、無、		
	④-1掘進停止再開(支障物)	φ5~10					記載なし)		
	④-2掘進停止再開(想定外地盤)	,					10年がる し)		
	その他(騒音、添加材・裏込め材漏出等)	φ 10~							
1-16	その他(到達工)	$\sim \phi 5$	7.6	GL-3	砂質土	公園		・泥水式シールド機の面板が、公園内に構築された到達立坑の山留壁に到達して作業を終え、	・立坑内から水平に薬液注入を行い、シールド機と地山の隙間を充てんした後に鏡切りを実施
							内の陥没)	翌朝に現場確認したところ、山留壁背面のシールド機の直上(工事用地内)に直径約3m、深さ	した。
								約0.7m(約1.6m³)の陥没が発生していた。	・立坑内に湛水して、シールド機を所定の位置まで水中到達させ、機内からシールド機周辺へ
								・到達部は崩壊性の高い砂質土であるため受け入れ部として、シールド機長+3mの薬液注入に	の裏込め注入を実施。確実に止水できたことを確認したうえで立坑内の水を揚水した。
								よる地盤改良が必要であると、発注者と協議したが認められず、鏡切りのための高圧噴射攪拌	
								工のみ実施し、慎重に掘進した。	
								・シールド機が地盤改良体内に入った段階で、推力の上昇や山留壁への影響を抑えるため切羽	
								圧を下げて掘進した。シールド機と地山の隙間(フリクションカット部)から土砂を取り込	
								み、陥没に至ったものと考えられる。	
1-17	その他(到達後の空洞確認)	~ \$ 5	4.6	GL-0.4	全線、細砂主体の砂質	道路(県道、	有(路面空	・本工事のシールド到達後に、数km離れた類似地盤の近隣シールド工事(他社工事)において	・切羽の圧力は、主働土圧+0.02MPa~静止土圧+0.02MPa の範囲で管理を行った。切羽圧力
			~6.4	~1.8	土層。平均N値12。平	市道)	洞)	陥没事故が発生したため、全路線にわたり路面空洞探査を行い、舗装下に2 か所の小規模な空	は、管理値内となるよう切羽圧力計の値を基に送泥ポンプを自動制御した。
					均均等係数5			洞(W0.6m×L0.7m×t0.1m、 W0.9m×L0.85m×t0.3m)が発見された。シールド通過時の路	・泥水比重は、地山の密度を参考に下限値を1.17とする管理を行い、毎リング掘進開始時と途
								面の沈下測量結果には空洞の影響は見られなかった。	中の2回計測を行った。管理値を外れた場合は、ただちに泥水調整を行った。自動作泥プラン
								【推定要因】	トを設置して常時良好な泥水を作泥、ストックすることで、速やかな泥水調整を可能とした。
								・施工場所は、過去の大地震により液状化現象が発生した場所であるため、空隙はその際に発	・排土量は、排泥管に設置した電磁流量計と密度計より算出し、リアルタイムで表示し、過去
								生した可能性がある。但し、空隙が発生した箇所は、細砂が固結した塊が出現し、排泥管に	20 リングの平均土量±20%の範囲を管理値とした。管理値逸脱の可能性がある場合、前もって
								引っかかり閉塞が頻発した。閉塞により切羽圧が瞬間的に変動することで地山にゆるみが生	切羽圧力を上げるなどの処置を行い、排土量を管理値内に収めた。
								じ、空洞が発生した可能性もある。	・掘進停止中は、専用バルブの自動開閉により切羽圧力を管理値内に維持した。また、休工日
								・排泥管閉塞時は、直ちに送排泥を停止することで、泥水が地上に噴発することもなく空隙も	前は掘進停止中にチャンバー内の掘削土砂の沈降や切羽の崩落が生じないようにチャンバー内
								最小限にとどめることができた。	を粘性が高い泥水に置き換えた。掘進再開時は、掘進再開前にチャンバー内の泥水を循環し
								・排泥管閉塞は、通常のシールド工事においても頻繁に発生するが、陥没につながる事例は稀	て、土砂の沈降や切羽の崩落などによる排土量の急激な上昇がないことを確認した。上記対策
								である。本工事は、近隣シールド工事で陥没が発生するような非常にゆるみやすい地山で土被	により、掘進再開時にカッターが回転不能となるトラブルはなかった。
								りも浅いため、排泥管閉塞による切羽圧の変動が空洞の発生につながったと考えられる。	

東女 IIII	該当トラブル		シールド	土地口	地下	地質概要	地表部の	地表部へ	トラブル発生状況	トラブル対応・工夫事例
						地貝恢女			トノノル光生仏儿	トノノル別心・工大争例
番号	①-1切羽圧の管理		径	(m)	水位			の予期せぬ		
	①-2泥水の比重管理		(m)		(m)		(道路、	影響		
	③排土量の管理	`	~ \phi 5				住宅地等)	(有、無、		
	④-1掘進停止再開(支障物		φ5~10					記載なし)		
	④-2掘進停止再開(想定外		φ 10~					10 100 00 0		
0.1	その他(騒音、添加材・		,	00.0	01.45	*************************************	/> -= 11 +A64	for	(A) 1839 1.663/6 L 278 L	
2-1		④-2掘進停止再開(想定	φ10~	30.0	GL-1.5	洪積層で互層(砂・砂		無	①シールドジャッキ総推力の過大	(①コピカッターや外周充填で摩擦軽減を図るが、改善されないので前に進めるために切羽圧を
		外地盤)				礫・粘土), N値30を	旦路、地下鉄 など		崩壊性の高い砂層を多く含む地層の掘進時に総推力を大きく上げないと前に進まないくらいの	
						超える硬質地盤	42		症状(胴締め)になった。	②チャンバー内に加泥材を添加したが、噴発気味になったため断念し、切羽圧を下げて安定す
									②カッタートルクの過大	るまでそのまま掘進を行った。⇒地表面への影響はなかった
	=								段取替え後の掘進再開時にカッタートルク値が上がった。	
2-2			~ \phi 5	6.8		沖積砂礫層、N値32~		記載なし	・玉石が混じる砂礫層において、礫の点接触による土圧計の損傷に備えて交換型土圧計を装備	・角膜式圧力計を用いた油封入式土圧計を新たに製作し、隔壁の注入孔に取付けることとし
				~11.4	~3.0	50 以上、礫分43~73%	商業施設等		したが、過度な集中荷重により固定型・交換型土圧計の双方において損傷が頻発したため、25A	
						細粒分5~10%、想定最			鋼管の先端に小型土圧計を取り付け、隔壁にある2 インチの注入孔に挿入することで対応し	内に作動油を封入して後端に設けた隔膜式圧力計にてチャンバー内圧力を検出するものであ
						大礫径400mm、透水係			た。しかし、注入孔の設置位置は撹拌翼の通過軌跡を考慮していないため、攪拌翼通過時の礫	
						数1×10-4~1×10-2m			の噛み込みにより衝撃が加わり、小型土圧計の故障が頻発した。	・隔膜式圧力計の測定レンジは一般のロードセルを用いた土圧計よりも大きく、シリンダに封
						/sec、地下水流速7.23				入した油を介して圧力を計測することにより、加圧時間の短い衝撃圧力に対して破損し難い利
						~14.34 m/h				点がある。
2 2				2.0	01.05	主 1 小所 1	* 100	+ ('P-1, o m	2. 1121年14676年147年147年11日14日14日14日14日14日14日14日14日14日14日14日14日1	
2-3			~ \phi 5	3.0	GL-2.5	表土、砂質土	道路		・シールド掘進終了後、数分で道路上に泥水が若干噴出。清掃後、対策検討。後日再発進。	・裏込注入圧を規定注入率の範囲で最小として管理して、その後の噴発はなかった。
								出)	・切羽水圧は記録から適正であったが、裏込圧が停止時に若干高かったため、地中の間隙水と	
									掘削泥水の一部が地上に溢れたものと推測される。	
0 4	-			0.0	01.15	\	¥-10- / □	+ /5**	71 (7) 4 (8) 5 (8) 4 (8) 6 (8)	
2-4			~ \phi 5	8.0	GL-1.5	沖積粘性土層(N値	道路(区		・泥土圧シールドにて掘進中に、シールドの約3m後方の区道の中央継目部から作泥土材が噴出	
						0~1)	道)、民家		した。路上監視員よりトラブル発生の一報を受け、直ちに掘進を停止し、作業帯を設置して清	
								出)	掃作業を行った。	の対応を行った。
									・トラブル発生当時、チャンバー内の異物による閉塞を解除するために、チャンバー内圧力よ	
									りも50kPa 程度高い注入圧でスクリューコンベヤから作泥土材を注入していた。なお、チャン	
									バー内圧力は地表面の沈下を防止するためにやや高めに設定していた。これに加え、閉塞解除	
									のためにカッターの正転・反転等も行っていたため、地盤に緩みが生じて作泥土材が逸走し、	
									地上に噴出したものと考えられる。	
2-5	③排土量の管理	④-2掘進停止再開(想定	~ d 5	13.5	GI -1 8	掘削断面は、N値6 程度	道路 下水	有(道路陥	- 排土制御が困難となったが、判断ミスにより掘進を続けたため道路陥没が発生した。	・陥没個所は恒久グラウトを実施。
2 3	=	外地盤)	Ψ5	15.5	GL 1.0	の粘性土とN値30~40			・掘進中、 ø 20 cmの玉石や流木 (L=40 cm) の出現によりスクリュコンベアや圧送ポンプの度	・追加土質調査の実施や残り区間の空洞調査の実施。
		ノドビ血 /				程度洪積砂層の万層。	ス管などが埋		重なる閉塞解除と大礫が混入したり粘性土が卓越したりと掘削断面の土質が大きく変化してい	・シールド掘進管理値の再設定や掘進管理体制を見直した。
						シールド直上部は、ハ	設		た。	THE THE PERSON OF THE PERSON O
						ンマーが自沈するN値0			・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
						~2 の緩い沖積粘性土層			なっていたことを認識していたが、スクリュウコンベアの回転を止めても排土されている状態	
						5m程度堆積、さらに地			となり、排土制御を上手くコントロールできない状態で掘進を続けた。	
						表面まではN値3~19			・一方、電磁流量計で計測された土量のボリュームの大半は水分であり計画値以上の土砂の取	
						の緩い~中程度の砂層			り込みはないものと判断して掘進を続けたが、結果的に計画排土量以上の土砂を取り込んだこ	
						が7m程度堆積。			とから地表面が陥没した。(陥没個所は、当路管理センターにより約40 t の砕石投入を実	
									施。)	
2-6	1		~ \$ 5	6.8	GL-1.0	沖積砂礫層、N値32~	道路、住宅、	無	・排土量計測において取込み過多の傾向が見られた。	・シールド機の天端に装備した地山崩壊探査装置により空洞の有無を確認するとともに、路面
				~11.4	1	50 以上、礫分43~	商業施設等			下空洞探査車により道路下の空洞を探査し、空洞箇所を充填することにより道路陥没を未然に
						73%、細粒分5~10%、				防いだ。
						想定最大礫径400mm、				・掘削の対象となる砂礫層は細粒分の含有率が低く、透水性が高いため、切羽圧力の不均衡が
						透水係数1×10-4~1×				生じやすい地盤である。このため、地山の緩みや排土量過多を原因とする地盤変状の防止を目
						10-2m/sec、地下水流				的として、従来方式である超音波センサーによる鋼車容量計測に併用してリアルタイム鋼車重
						速7.23~14.35m/h				量管理システムを採用した。
						,				・リアルタイム鋼車重量計測とは台車の4点にロードセルを取り付け、鋼車に積み込む掘削土
										砂の重量を1台毎に計測するものである。
										計測データは台車に設置した無線送信機によりシールド運転席に伝送し、排土量と掘進長の関
										係をディスプレイにリアルタイム表示する。計測装置と無線装置に使用する電源は、台車に搭
										載したバッテリーにて供給する。
										・超音波センサーによる容量計測では、鋼車に積載された土砂の荷姿や添加材に気泡を採用し
										たことから、計測値のばらつきが大きかったため、重量計測値を正、容量計測値を副とした管
										理を行った。
										・また、重量計測値から体積換算する際には掘削土砂の比重設定が重要となるため、立坑下に
										て鋼車積載土量の体積を人為計測し、見掛け比重設定値の更新を行った。

整理 該当トラブル	シールド	十畑口	地下	地質概要	地主並の	- 地主並 へ	トラブル発生状況	トラブル対応・工夫事例
登理 該当トフノル 番号 ①-1切羽圧の管理				地貝ベ安	地表部の 土地利用	地表部への予期せぬ	ドノノル充土仏流	トノノル刈心・工大争例
①-2泥水の比重管理	径 ()	(m)	水位					
③排土量の管理	(m)		(m)		(道路、	影響		
④-1掘進停止再開(支障物)	$\sim \phi 5$				住宅地等)	(有、無、		
④-2掘進停止再開(想定外地盤)	<i>φ</i> 5~10					記載なし)		
その他(騒音、添加材・裏込め材漏出等)	φ 10~							
2-7 ③排土量の管理	~ \$ 5	2.4 ~9.7	GL-1.4	間:下半は泥岩(土 丹) (N 値50 以上)、 上半は粘性土(N値3)	は道路直下、 到達立坑付近 の道路沿線に は民家	有(地表面隆起)	・シールド機からズリ鋼車までの排土搬送は、 2 箇所の急曲線部の対応とスクリューゲート付近での噴発などによる土砂の取込み防止のため、ベルトコンベア方式に代えて、ノンタックホース方式を採用した。 ・スクリューコンベア(以下、SC)内径は ϕ 300mm であったが、ノンタックホースは後方設備の制約から ϕ 200mm となり、SC 排土口に接続レジューサーを設けてノンタックホースと接続した。このように排土口径を縮小したため、接続レジューサー部分では粘性土が圧縮され、その圧力が切羽の地盤に伝達され、土被りが $1D$ 程度であったこともあり地表面が隆起傾向になった。特に、発進直後は度重なるレジューサー内閉塞が発生し、地表面が最大 32 mm 隆起した。	・立掘削時の現位置土砂を用いて各種添加材の試験施工を実施した結果、分散剤系の添泥材が 最も適当と判断し掘進を開始したが前述のトラブル発生のため、掘削土の流動性の向上とレ ジューサー部での摩擦抵抗を低減させる目的で増粘剤系の加泥材に変更した。 ・さらに、接続レジューサーに直接加泥材を添加できるルートを増設するとともに、エアー配 管も追加した。
2-8 ④-1掘進停止再開(支障物)	φ 10~	9.0	GL-8.0	盛土層、粘性土・砂質 土・砂礫の互層	事業用地	無	・土被り1D未満の区間において、障害物(鋼管)に干渉したことで切羽圧力が急激に低下し、シールド機直上の地表面に管理値以内であるが局所的な沈下が生じた。 ・局所的に逸泥しやすい埋戻し地盤が主体であったことから、一時的に加泥材等の逸泥が発生したことが影響したと考えられた。	・地表面変状の進行抑制として、薬液注入工により埋戻し地盤の間隙を充填し、周辺地盤を補強した。あわせて空隙探査を実施した。 ・チャンパー内の土砂性状の塑性流動性、分離抵抗を向上させるために、室内試験を実施して逸泥しにくい高比重、高粘性の加泥材に変更した。 ・シールド掘進に合わせて、シールド機外周に胴体注入を行うことで地盤変状を抑制した。その後、地盤変状なくシールドを通過した。
2-9	φ 10~	30.0	GL-5.0	粘性土・砂質土	道路	無	・掘進延長7km付近/8km地点の掘進中に異常発生、金属性の障害物に接触し掘進を一時停止 (スクリューコンペアからの排土が悪化、切羽土圧の上昇、シールド機内からの異音が発生)	・地上路面変状監視、測量を強化 ・掘進速度を低下させ掘進 ・障害物を取り込むために加泥材注入率を増加 ・地山探査装置により地山崩壊の有無の監視を強化 ・回収物が鋼管の井戸であることが判明したため、支障物接触箇所の区間の裏込め注入を圧力 管理で増加させた。 ・地表面に異状なくシールドを通過した ・発注者、隣接工区と支障物の情報を共有
2-10	~ \$5	7.0 ~11.0	GL-1.5 ~3.7	N 値12 程度の砂、砂礫 混じり粘土からN 値60 以上の砂礫の互層		記載なし	・親子シールドの子機で鉄道高架下部分を通過中、突如カッタートルク上昇したため、掘進停止した。鉄道会社で旧構造物等の確認したところ、旧橋台の基礎杭(H300、L=7.2m、18本)が残置されていることが判明した。	・基礎杭については高架への影響防止矢板・計測管理を実施したうえで、深礎及び低空全旋回機にて支障となる11 本を切断、除去を実施した。良質土で埋め戻し後、地上観測を実施ながら再掘進した。 ・掘進停止中は土圧下降がないか確認し、下降がみられる場合は可塑性泥しょう材を注入した。再開時は、加泥材の十分な注入と攪拌による塑性流動化を確認の上、掘進開始した。
2-11	~ \$ 5	19.2 ~23.2	GL-1.4 ~2.4	洪積砂礫層、洪積砂質 土	道路	無	・発進基地に隣接する建物の地下部分で施工されたグラウンドアンカーが残置されており、 シールド掘進中にスクリューコンベヤーが閉塞し、一時的に掘進不能となった。建物の再調査 の結果、アンカー鋼線が連続的に残置されていることが判明した。	・この残置アンカーがシールド線形に干渉する範囲を高圧噴射撹拌工法で改良した後、シールド機でアンカー鋼線を直接切削しながら掘進し、地盤改良防護の状況下で、定期的にチャンパー内を点検し、チャンパー内に取り込まれたアンカー鋼線を人力で回収しながら掘進を行った。 ・また、アンカー支障区間の終端部に中間立坑を設置して、残区間のシールド掘進を確実に行うため、カッターを点検の上、ビットを新品に交換して再発進させ、シールドを無事完了した。
2-12	~ \$5	7.0 ~27.0	-	砂(N 値7~35) 礫(N 値50~250)	道路 等	無	タートルクが突発的に上昇しはじめ、掘進速度が毎分30mmから5mmほどまで低下。シールドに異常が発生したと判断し、掘削作業停止。 ・昼間に再度カッターを回転させて掘削を試みるも状況の改善が見られないことから施工を中	・その後、構造物の現状把握のため地表面より試掘作業を行ったところ、受領図と構造物の位置がずれており、構造物施工時の残置鋼矢板へシールドが接触している事が判明した。 ・原因判明後は、地表面の影響監視(震動計、沈下測量)と構造物の監視(内部クラック調査)を行いながら低速で鋼矢板を直接切削した。直接切削での施工による地表面、構造物への影響は見られなかった。
2-13	~ \$ 5	5.0 ~13.0	-	粘土・シルト(N 値3〜 10)	道路等	記載なし		のトンネルを残置し、発進立坑から新たなシールド機で別トンネルを築造する方法を選定し

击ケ TEP	該当トラブル	S. u. 18	1 44 11	地下	地質概要	地表部の	IJb ≢ ☆7 ·	トラブル発生状況	1 ニデリ社内 エナ市内
		シールド			地貝傑安			トノノル先生仏流	トラブル対応・工夫事例
番号	①-1切羽圧の管理	径	(m)	水位			の予期せぬ		
	①-2泥水の比重管理	(m)		(m)		(道路、	影響		
	③排土量の管理	~ \phi 5				住宅地等)	(有、無、		
	④-1掘進停止再開(支障物)	φ5~10					記載なし)		
	④-2掘進停止再開(想定外地盤)	φ 10~					12 130 0 0 7		
0.11	その他(騒音、添加材・裏込め材漏出等)	,	0.0	01.40	> 18 Nov T . 1 100 1 A 1	\	+ />====		■ 1 1
2-14	0	φ5~10	9.3	GL-4.8	シールド断面は概ねN	河川	有(河川での	・当初計画では、風化花崗岩を硬質な土砂相当と評価していた。そのため、シールド掘進は、	
	外地盤)		~14.4		値50~300 を示すDH 級				・計画的に2ヵ所でのビット交換を行う計画へ変更
					の風化花崗岩が分布		没)	し、風化花崗岩シールド発進後約60m 掘進後、カッタートルクの増大および掘進速度の低下に	
					し、一部区間で掘削断			陥った。これにより、ビットの早期摩耗および面板,チャンバーの閉塞が推定された。	・面板の改造(開口率のアップ34%→38%)
					面下半にCL 級風化花崗			・また、当初計画では、添加材として気泡材を選定していたが、風化花崗岩の方状節理(割れ 日本 は、 では、 では、 では、 では、 では、 では、 では、 では、 では、	
					岩を想定			目)を通じて、河床への漏気と小陥没が観察されたため、添加材を見直した。	・高分子系とベントナイトを併用した添加材へ変更
								・シュミットロックハンマーによる原位置地山の調査結果では、事前調査を上回圧縮強度(平均16MPa)を確	
								認。風化岩においては、ボーリングによるコアサンプリングでは強度低下が生じ、事前調査時点で正確な	
									漏気や小陥没は抑制できた。また、ビット交換計画および長寿命化により変更計画どおり、
									シールド掘進を完了した。
2-15	④-2掘進停止再開(想定外地盤)	~ \$ 5	6.8	GL-1.0	沖積砂礫層、N値32~	道路、住宅、	記載なし	・高分子系の添加材で掘進を開始したが、排土性状が液状となり、掘削土砂の噴発、推力上	・そこで、砂礫層におけるチャンバー内固着は考え難いものの、チャンバー内を付着防止効果
_ 10	0 3,4,6,7 2,7,7,7	Ψ 0	~11.4		50 以上、礫分43~	商業施設等	10 10 0	昇、カッタートルク上昇、掘進速度低下が生じたため、鉱物系添加材+ケイ酸と気泡を併用し	のある高分子系添加材で洗浄することとした。掘進停止時に高分子系添加材の分散剤と浸透剤
					73%、細粒分5~10%、				をチャンバー内に注入し、スクリューコンベヤから排土することで、チャンバー内掘削土砂を
					想定最大礫径400mm、				高分子系添加材に置換した。
					透水係数1×10-4~1×			や地山細粒分が固着している可能性が考えられた。	・チャンバー内の置換・洗浄後は閉塞、カッタートルク、推力等が回復した。
					10-2m/sec、地下水流				また、鉱物系添加材+ケイ酸が高価なため気泡単体での掘進を試みたが、掘進再開時にカッ
					速7.23~14.35m/h				ター回転不能となった。気泡のみでの掘進は可能であるが、掘進を停止するとチャンバー内の
									気泡は消泡し、礫の噛み合いでカッター攪拌抵抗が上昇する。このため、鉱物系添加材+ケイ
									酸と気泡を必ず併用するようにした。
2-16	·	4.5	10.2	CL 2.0	7份山山 400 子 /十十~4.5	*************************************	=1 ±+ √. I	○ 7歳 ○ 14 笠田 中	①匈古ナート・本市」 イヤザー 明 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2-10		~ \phi 5	18.3 ~35.5	~3.0	礫地盤主体だが、洪積 粘性土、洪積砂礫層、	担始(記載なし	①礫の排管閉塞 ・メタンガス対策のため、土砂圧送が指定工法だったが、 φ 100~150 の礫が多数存在、礫率が	①鋼車方式に変更して掘進再開したがテールブラシ損傷して出水し、対策として凍結工法によ
			~33.3	~3.0	沖積砂質土層と多種に				る) ールノブン交換を実施。 ②土砂の取り込みは殆どなく、地盤改良にて止水、スキンプレート、マシン全体補強を実施し
					渡る。メタンガスの含	情等の重要情 造物の近接施			②工がの取り込みは石となく、地盤以及に C エハ、 スキンプレード、 マンプ 主体
					友	上)		・地下鉄の近接影響区間を抜けた段階で推力が装備推力の90%以上やカッター回転がたびたび	र माण ७
					1 →			停止した。マシンの拘束解除のため、中折れジャッキ押し引きや首振りで拘束解除を実施しな	
								がら掘進中にマシンのスキンプレート破損で出水した。	
								10 Junio Francis	
2-17		~ \$ 5	14.0	GL-1.5	玉石混じり砂礫層	道路	記載なし	・切羽に支障物(巨石)が出現したことに伴うカッタートルク、推力上昇による掘進不能	・路上からの探査ボーリングによる支障物確認
									・止水対策として路上から地盤改良として薬液注入を施工
									・シールド機内から切羽に人が入り、人力にて支障物(巨石)を撤去
									・薬液注入による推力上昇の対策としてRC セグメントからST セグメントに変更
2-18		~ Ø 5	8.1	GL-1.4	粘性土層 (N 値0~5)	シールド路線	記載なし	・メタンガス対策の一環としてシールド掘削土の排土方式に土砂圧送方式が設計されていた。	・当初、ベントナイト溶液主体の加泥材を使用し、掘削土砂に対して40%の注入率で改良を実
		, , , , , , , , , , , , , , , , , , ,	21.8	1	1	は道路直下、		掘削土砂の性状は、土質調査結果より75μm以下のシルト分・粘土分(細粒分)が最小40%含	
					で砂礫層(N 値30~	道路沿線には		 有で、加泥材は1,595m 全線で添加不要となっていた。しかし、実施工では、掘進延長約1100m	に対し、分離(脱水)を生じにくくするため、土粒子間の水分の保水性を高める高分子系の加
					50) やローム層 (N 値7				泥材に変更したところ、到達まで閉塞することなく、掘進することができた。
					~9) が出現			なった。	
2-19	その他(添加材・裏込め材の地表への流出)	φ10~	1 D~ 3	GL-2.0	硬質粘性土	道路	有(添加材、	・掘進中に気泡材や裏込め材が地表に漏出。	・当該箇所の漏出状況を監視しながら、速やかにシールドを通過。
		<i>'</i>	D程度					・漏出した箇所には、シールドから地表につながる空隙があった模様(地質調査ボーリング跡	・地質調査ボーリング跡等を調査し、該当箇所があった場合は、シールド通過時は監視体制を
							出)		強化。
2-20	+	φ5~10	2 D 程度	GL-2.0	砂岩	道路(中央分	有(添加材の	・掘進中に気泡材が地表に漏出。	・掘削添加材を気泡溶液(発泡させない)に変更して当該箇所を通過。
2-20		Ψ 3 10	とり仕及	GL-2.0	~ 1µ	離帯)	漏出)	- 端壁中にXi2利が地表に欄山。 - 漏出した箇所には、シールドから地表につながる水位観測孔があり、地質調査会社が閉塞す	・当該箇所付近の裏込め注入を実施する前に掘進を停止。
						12 / III	mts EE /	るのを忘れていた。	・観測孔をモルタルで充填してから掘進再開。
									・掘進再開後は、掘削添加材を気泡(発泡させる)に戻す。
0.01	}	4.5	2 D N 1	01.00	7份 屈	## ###	± (\\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	极来中1-左边升战啦车1-左门	
2-21		~ \phi 5	∠∪以上	GL-3.0		農地	有(添加材の		・掘削添加材を気泡から鉱物系添加材に変更
L							漏出)	・地中に空隙があったため漏出したと推測。	
2-22	その他(騒音・振動等)	~ \$ 5	11.0	GL-3.0	軟弱な粘性土	道路、	有(騒音)	・夜間作業の掘進時、寝ていてうるさいとの苦情があった。	・通常掘進スピードよりも2/3~1/2程度のスピードに落として対応。
						住宅地等			・スピードを落とした結果、苦情もおさまり無事に掘進完了できた。
2-23	その他(到達後の空洞確認)	~ \phi 5	10.0	GL-8.0	表土、砂質土、粘性	道路 (歩道)	有(道路陥	・シールド掘進完了半年後に、路線上部の歩道の一部で30 c m程度の陥没穴があり、1 m ³ 程度	・地表面補修済み
					土、風化花崗岩		没)	の空洞であることが分かった。	
								・シールド掘進データを再度検証しても、取込み、逸泥の挙動を示すデータはなかったが、そ	
								の部分は砂質地山から弱風化花崗岩に変わる場所で掘進に時間を要した場所となっていた。そ	
								のことから、多少の地山の取込みがあったのと、ミニシールド工法であったことから裏込注入	
								のタイミングが遅く、地山の緩みに繋がったのではないかと想定された。	