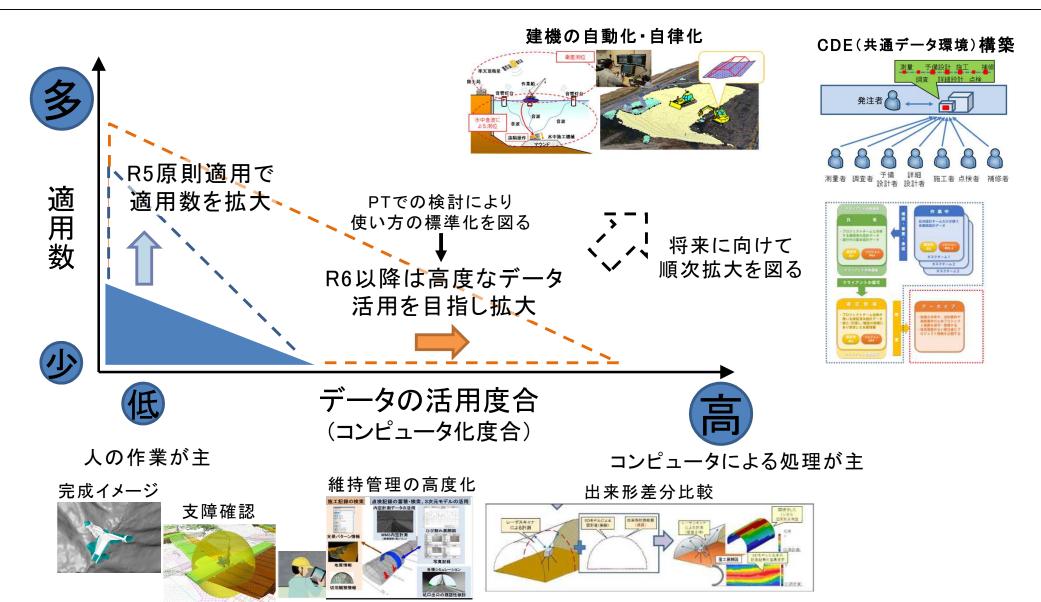
第9回 BIM/CIM推進委員会 令和5年1月19日


資料 5

令和5年度以降の検討について

今後の検討について

- ・ 令和5年度からのBIM/CIM原則適用により、中小規模の企業を含め裾野を拡大
- 令和6年度からのより高度なデータ活用に向けた検討を今後実施し、建設生産・管理システムの効率化を目指す

PTの開催状況

- ・8月30日の第8回BIM/CIM推進委員会以降、PTとして、各団体とのヒアリングを実施
- 新たな具体的課題が判明次第、新規PTを設立し、課題が解決すればPTは解散

1011-0-0-11-11-1-1-1-1-1-1-1-1-1-1-1-1-							
名称(案)	原則適用PT	測量から設計 に繋ぐPT	地質から設計に 繋ぐPT	設計からICT建機 に繋ぐPT	橋梁製作 システムPT	ソフトウェア 機能要件PT	橋梁特定部PT
具体的 課題	実施方針の確認		地質調査成果の 引継事項検討	設計成果をICT建 機に直接取込む 方法	設計成果と原 寸システムの 連携		橋梁設計におけ る特定部の確定
参加団体 (案)	推進委員会 地整	日測協・測技 協・全測連・建 コン協・地理院		建コン協・日建連・ 全建・公企課	建コン協・橋建協・地整	OCF-bSJ	建コン協・橋建 協・PC建協
9月	7日(建コン) 8日(全建) 15日(道建協・日建連) 27日(地整)				12日(橋建協)		
10月	4日 (第1回) 11日 (測技協)						
11月			2日(全地連)				
12月	8日(第2回) 15,22日(地整) 20日(日建連)	7日(第1回)			26日(橋建協)		23日(第1回)
1月	13,20,27日(地整)	24日(第2回)				25日(第1回)	
2月	2, 9,16,22日 (地整)	17日 (第3回)					
3月			PA-L-	-4 00	Dr. 1 .		
4月			随	時開	催		字:個別ヒア_
				J 17.3		青	字:正式PT

PTの議題と今後の動きについて

- 過去に開催したPTの主な議題は下記の通り
- 原則適用PTは来年度、R6原則適用PTへ役目を引き継ぐ
- 橋梁特定部PTはモデル化する特定部について結論が出たため、終了
- 原則適用PT (過去2回開催、R6原則適用拡大PTへ引継ぎ)
 - 重要なデータの引継ぎについて
 - →地質設計PT、測量設計PTで設計段階へ引き継ぐべきデータを検討
 - →設計施工PTで施工段階へ引き継ぐべきデータ、成果品への収め方を検討
 - ・過密配筋の費用対効果について
 - →設計施工PTで詳細を検討
 - ・特定部の記載について
 - →橋梁特定部PT(12月26日開催)で議論
- 測量設計PT (12月7日に開催、第2回を1月24日に予定)
 - ・対象範囲について
 - →公共測量を対象範囲とし、工事測量は別のPTで議論する
 - ・第2回について
 - →【宿題】概略設計から詳細設計までに必要な測量データと活用時期・目的を整理して提出 【議題】提出された「宿題」を基に、必要な測量データを得るために必要な技術等を確認
- 橋梁特定部PT (12月26日に開催、終了)
 - ・3次元モデルでモデル化する特定部について 支点周辺の支承、落橋防止装置、伸縮装置、排水管、検査路の接続位置をモデル化する

来年度以降の課題解決に向けて

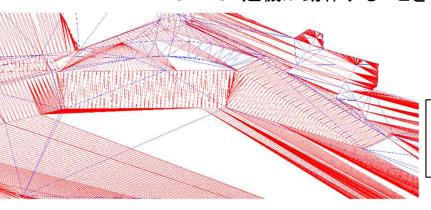
- これまでの検討から挙げられる課題について、PTを設置
- 関連団体に声をかけ、来年度以降、検討を開始
- PTについては、必要に応じて開催し、推進委員会や報告会で検討成果を報告

PT(代表例)	関連団体(案)	議題(解決する課題)
R6原則適用拡大PT	BIM/CIM推進委員会•地整	令和6年度の原則適用の範囲拡大
測量から設計に繋ぐ PT	日本測量協会・測技協・全 測連・建コン協・地理院	設計業務で必要となる測量データの特定と受 け渡し方法
地質から設計に繋ぐ PT	全地連・建コン協・土研	設計業務で必要となる地質データの特定と受け渡し方法
設計からICT建機に 繋ぐPT	建コン協・日建連・全建・公企課・地整	設計業務から施工へICT建機に搭載するデータの効率的な受け渡し方法
設計から施工に繋ぐ PT	建コン協・日建連・全建	施工に必要となる設計業務データの特定と受 け渡し方法
橋梁製作システムPT	建コン協・橋建協・地整	設計成果と原寸システムの効率的なデータ連 携
ソフトウェア機能要件 PT	bSJ-OCF	ソフトウェアに求める機能
国際基準PT	bSJ	国内の取組みに取り入れるべき国際動向

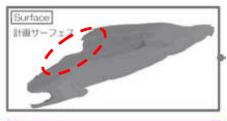
(検討予定の例)設計からICT建機のデータ連携について

目指す方向

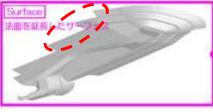
設計で作成した3次元モデルを利用し、追加コストが少なくICT建機で利用可能とする


現状の課題

これまでの検討により、以下の課題がある

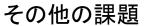

課題1

作成するデータの違い

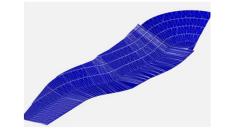

設計:数量を精度よく出すことを目的に作成 ICT:ICT建機が動作することを目的に作成

設計モデル 細かい ICTモデル 粗い

設計モデル 現地形合わせ



ICTモデル 法面延伸


課題2

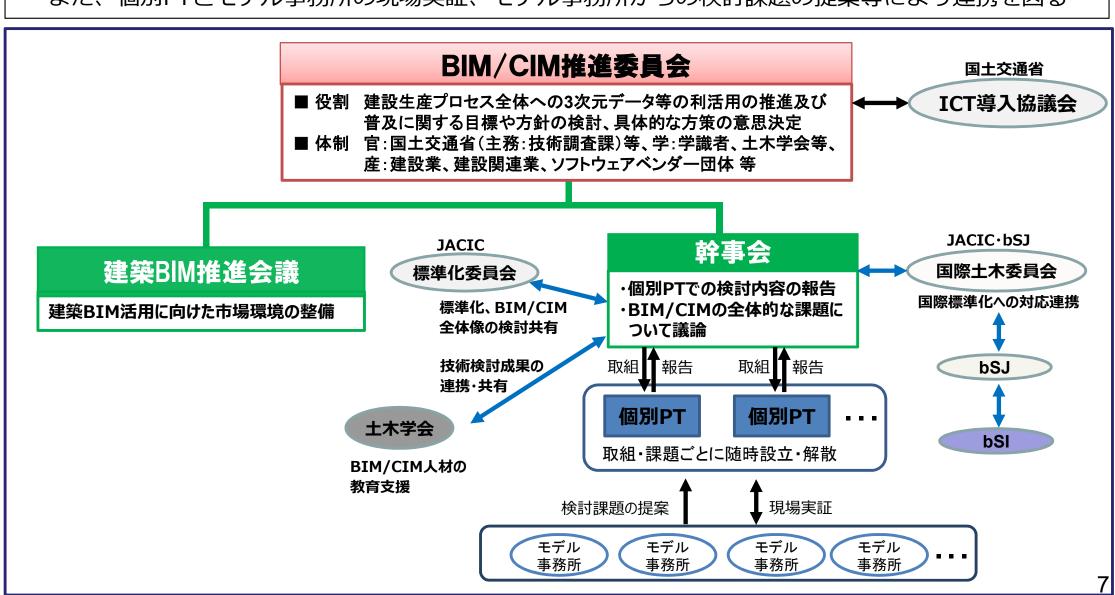
ICT建機用のデータ(サーフェスモデル)の編集が困難

工区分割、現地形の変化等によりデータ修正が生じることがある。 2割変われば、作り直した方が速いという意見もある。

建機メーカーによって、読み込み可能なデータが異なる?発注者の対応方法(工区分割時の修正作業など)

—

PTでの検討


設計モデルを自動変換によりICT建機に利用できないか?(点の間引き?)設計・施工とも人の手間が少ないデータのあり方は?

令和5年度以降のBIM/CIM推進委員会の体制図

- 建築WGを除いた全てのWGと幹事会を「幹事会」に統合し、BIM/CIMの全体的な課題について議論
- BIM/CIMの普及・拡大に向けて、少数関係者による個別検討体制(個別PT)を「幹事会」の下に構築 し、個別課題ごとの検討を充実化させる

また、個別PTとモデル事務所の現場実証、モデル事務所からの検討課題の提案等により連携を図る

R5以降の検討について

幹事会、R6原則適用拡大PTを中心に大枠の議論を行い、個別PTを中心に個別課題の解消に向けた 検討を実施する。

また、一般化・制度化に向けて現場試行を合わせて実施する。

将来に向けた検討事項

- ▶ 3次元モデルの使い方の検討(事業監理・マネジメントでの活用、施工の省力化・自動化、監督・検査等の書類の効率化)
- 共通データ環境(CDE)の検討 など