リモートメンテナンス機器

仕 様 書

令和7年10月

公募1 標準センサー系システム仕様書(案)

1. 総則

1.1 適用範囲

本仕様書は、「リモートメンテナンス機器の実証検証」に関する公募に適用する。

1.2 概要

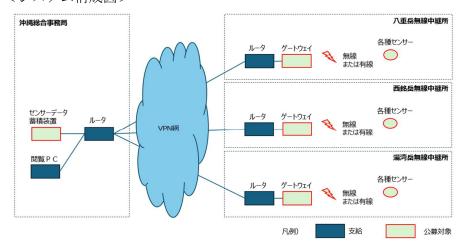
本システムは、無線中継所室内における発電設備、ネットワーク機器、室内環境の状態 監視を目的としたセンサーシステムである。各種センサーを用いて、振動、温度、湿 度、気圧、風量、AC電圧等を計測し、データ収集する。収集データは、設備の正常・異 常の判断のほか故障検知・予兆のために利用する。なお、収集後のデータ解析・故障検 知等のソフトウェア部分は別途(公募1に含まない)とする。

1.3 システム構成

実証検証における機器の構成は以下の通りとする。

【センサー】

・センサー


【ゲートウェイ】

・ゲートウェイ

【センサーデータ蓄積装置】

- ゲートウェイからのデータを受信しデータを蓄積する。
- ・出力形式はcsv 等とする。

<システム構成図>

1.4 測定対象設備

センサーにより測定を行う設備を以下に示す。またセンサー数量に対して必要な数量の ゲートウェイ、センサーデータ蓄積装置を用意すること。

拠点	設備	測定ポイント
八重岳無線中継所	発電機	本体
	ネットワーク機器	本体
	室内環境	空間
	分電盤	AC 電圧 (3 相の SRT)
西銘岳無線中継所	発電機	本体
	ネットワーク機器	本体
	室内環境	空間
	分電盤	AC 電圧 (3 相の SRT)

2. 機器仕様

2.1 センサー

想定するセンサーは以下のとおり。

- (1)振動センサー
- (2) 温度センサー
- (3)湿度センサー
- (4) 気圧センサー
- (5) 風量センサー
- (6) 電圧モニタ (ACO~200V)
- (7)その他有効なセンサー

※センサーを含む機器の想定される仕様は、以下のとおり。

設置方法:自立・マグネット・ネジ固定またはそれに類する 寸法: 150×150×150mm以下 (コネクタ・ケーブル類除く)

重量:300g以下(コネクタ・ケーブル類除く)

2.2 ゲートウェイ

センサーデータを IP ネットワーク通信信号に変換しセンサーデータ蓄積装置へ送信する.

- ・通信方式(IP ネットワーク): Wi-Fi または Ethernet とする。 (ゲートウェイ・センサー間): 任意方式とする。
- ・測定間隔:600 秒以内(任意で指定可能とする)
- ·動作温度範囲:0°C~+40°C
- ·湿度範囲:20~85%RH(非結露)
- ・電源範囲: PoE 受電 (802.11af または at) または AC100V

2.3 センサーデータ蓄積装置

(1) ゲートウェイから受けとったセンサーデータを蓄積する。ゲートウェイから本装置までの通信回線については Wi-Fi または Ethernet 接続とする。通信回線としてインターネット回線または独自通信(LTE など)の使用も可とする。

センサーデータ蓄積装置はデータを CSV ファイル等で蓄積する。別途構築 (本仕様に含まない) される故障予兆ソフト側でその CSV ファイル等からデータを取得する。

(2) データ蓄積方法については後処理でデータ解析に使用するため、以下の形式とすること。

形式: csv 等(カンマ区切り)

項目:日時秒タイムスタンプ、センサー名、センサー測定値

CSVファイル等の生成単位はセンサー毎とする。

以上

公募2 音センサーシステム仕様書(案)

1. 総則

1.1 適用範囲

本仕様書は、「リモートメンテナンス機器の実証検証」に関する公募に適用する。

1.2 概要

本システムは、無線中継所室内に設置し、設備(発動発電機)の音 (稼働音や異常音)を収集・解析するシステムである。マイクを用いて音を収集し、収集した音データを解析装置等で処理することにより、設備の正常・異常の判断のほか故障検知・予兆の把握に利用する。

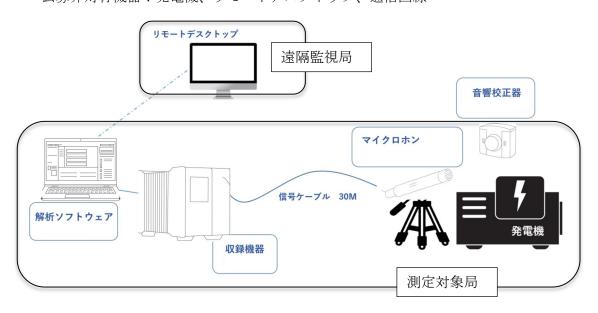
1.3 システム構成と数量

実証検証における機器の構成および数量は以下の通りとする。

【マイクロホン】 1式

音響データを計測する音センサでありプリアンプ、信号ケーブルを含む

【収録機器】 1式


音響データを収録・解析 (FFT 解析) する機器およびソフトウェアおよび PC

【音響校正器】 1式

マイクロホンの校正用

<システム構成図>

- ・公募対象機器:マイクロホン(プリアンプ、信号ケーブル含む)、収録機器(解析ソフトウェア含む)、音響校正器
- ・公募非対称機器:発電機、リモートデスクトップ、通信回線

2. 機器仕様

以下、参考とする。

- 2. 1マイクロホン/プリアンプ
- (1) 周波数特性は10 Hz~20 kHz においてフラットであること。
- (2) 自己雑音レベルが 19dB 以下であること (A 特性)。
- (3) 最大音圧レベルが 130dB 以上であること。
- (4) プリアンプの最大出力電圧が±5.6V であること。
- (5) マイクロホン用三脚を含むこと。

2. 2 収録機器

- (1) A/D 変換精度は 24bit 以上であること。
- (2) ダイナミックレンジは 130dB 以上であること。
- (3) チャネル間位相精度が±0.1° (20KHz) 以下であること。
- (4) 最大48 チャンネル以上のチャネル拡張性を有すること。
- (5) チャンネルが絶縁対応されていること。
- (6) PC を用いず、収録機器単体でのデータ収録が可能であること。
- (7) 動作温度が 50℃までであること。
- (8) FFT 解析が可能であること。
- (9) ソフトウェア動作させる PC を含むこと。

2. 3音響校正器

- (1) 適合規格が JIS C 1515:2020 クラス 1 適合であること。
- (2) 公称音圧レベルが 94 dB であること。
- (3) 公称周波数 が 1000 Hz であること。

以上

公募3 故障予兆ソフト仕様書(案)

1. 総則

1.1 適用範囲

本仕様書は、「リモートメンテナンス機器の実証検証」に関する公募に適用する。

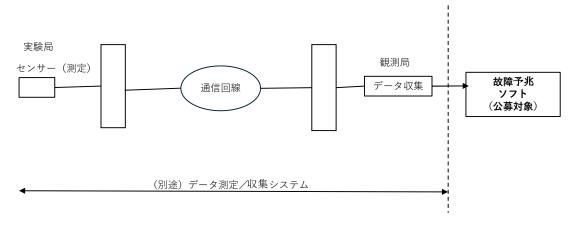
1.2 概要

本ソフトウェアは、無線中継所や通信局舎等に設置されたセンサー (温度、湿度、振動、音、電圧など)等から取得したデータを解析・学習することで、設備の故障予兆を行う故障予兆ソフトウェアである。

本ソフトウェアを「リモートメンテナンス機器の実証検証」に使用する。

1.3 実証検証システム構成(参考)

実証検証における機器の構成は以下の通りとする。


【構成要素】

・ (本公募対象) 故障予兆ソフト

本ソフトウェアは、通信局舎内の設備に設置した機器(センサー等の別途設備)にて取得したデータ(CSV 形式等)を受信し、解析・学習を行うことで故障予兆を行う、故障予兆ソフトウェアである。

- ・ (参考) 本ソフトウェアを使用する拠点 (観測局):沖縄総合事務局
- ・ (別途設備) データ取得システム (センサー:温度・湿度・振動・電圧等)

<システム構成図>

1.4 故障予兆ソフトの構成

故障予兆ソフトの構成を以下に示す。

・故障予兆ソフト 1式 (windowsPC にインストールできること)

1.5 故障予兆の対象設備

故障予兆の対象設備は、公募1のセンサーを設置する設備を想定している。

2. 故障予兆ソフト仕様

2.1システム性能要件

·同時監視数:5 設備以上

・センサー数(データ入力数):10以上

・データ蓄積期間:最大1年間・対応 OS: Windows10 以降

2.2 データ入力仕様

入力データ形式を示す。

入力データ形式 : CSV ファイル等(項目:日時、センサータグ名、測定値)

2.3 故障予兆を行うための学習・解析機能

本ソフトウェアは、設備状態について取得データを用いて学習および解析することで故 障予兆や異常検知を行うための機能を有すること。

学習および解析の手法については、各社の実装が異なるため、公募者の方式を提案する こと。「故障予兆のための学習・解析機能の方式について」説明資料(手法、特徴(メ リット、デメリット)、適用事例を含む))を添付すること。

< 故障予兆のための学習・解析機能の手法例> (手法の例を示すものであり、これらに限定されるものではない。)

手法例1:正常状態のデータパターンを統計的・数理的手法によりモデル化し、新たな 測定値との乖離(ズレ)を解析して異常を検知する。

手法例 2:深層学習や異常スコア学習などの解析手法を適用し、正常・異常の両データをもとに設備の動的モデルを自動生成・更新する方式。

手法例3:時系列データの変動傾向やセンサー間の相関を解析し、劣化の進行度や異常 の兆候を予測的に捉える自律型解析技術。

2.4 解析結果表示機能

解析結果を表示する機能を有すること。

表示する機能:解析結果は診断画面上で可視化(色別、グラフ、リスト、数値等)にて確認できること。

以上