(別紙 2)

1. 課題番号 第10号

2. 研究課題名 コンクリートがらを母材とした CSG の開発

3. 研究期間 平成 23 年度~平成 24 年度

4. 代表者及び研究代表者、共同研究者

代表者	(代表者氏名)	(所属機関・職名)
研究代表者	丸屋 剛	大成建設株式会社 技術センター
		土木技術研究所 土木構工法研究室 室長
共同研究者	堀口 賢一	大成建設株式会社 技術センター
		土木技術研究所 土木構工法研究室 課長
	小山 哲	大成建設株式会社 技術センター
		土木技術研究所 土木構工法研究室 主事
	古田 敦史	大成建設株式会社 技術センター
		土木技術研究所 土木構工法研究室 主任
	松元 淳一	大成建設株式会社 技術センター
		土木技術研究所 土木構工法研究室 主任

5. 補助金交付総額 17,550千円

6. 研究・技術開発の目的

室内試験や実施工実験により、コンクリートがれきを母材としたセメント硬化体が所定の品質を有 することを確認し、実用化のための品質管理手法を確立する.また、コンクリートがれきの粒度を迅速 に評価するために、画像解析処理を用いた粒度分布推定手法を確立する.

7. 研究・技術開発の内容と成果

7.1. 成果を適用する構造物と部位

表-1 に本技術開発の成果を適用する構造物と部位および要求性能を示す.

破砕したコンクリートがれきにセメントと水を混合して作られるセメント硬化体は、一般的なコンク リート構造物に使用するコンクリートほどの圧縮強度を有さなくてもよい用途の材料として、例えば盛 土材や嵩上材、堰堤中詰材、ならびに護岸内部材のような圧縮強度で1~6N/mm²程度を有すればよい 材料、もしくは堤体上流側の外部材のように圧縮強度で6~18N/mm²程度を有すればよい材料を目指し た.また、防波堤上部工材のように圧縮強度で18N/mm²程度が要求される材料や、コンクリート舗装 材として曲げ強度で4.5N/mm²程度が要求される、やや品質の高い材料としての適用も検討した.いず れの用途に対しても、施工には振動ローラーを用いて転圧締固めすることを想定し、目標スランプがゼ ロの超硬練りの仕様として検討したが、圧縮強度で18N/mm²程度が要求される消波ブロックや根固め ブロック、被覆ブロックなどのような用途も考慮し、有スランプでの仕様も一部で検討した.また、要 求性能は明確に定められていないが、製造時の自重程度に耐えられる圧縮強度があればよいものとして、 漁礁も適用対象のひとつに挙げた.

適用を目指す構造物・部位	要求性能	要求される 強度レベル (N/mm2)	参考基準
海礁	・海中での長期耐久性	製造時の 自重に耐える 圧縮強度	_
埋戻材 盛土材(補強土) 地盤の嵩上げ材 塩豆 3221- 地盤の嵩上げ材 土留め村・盛土村 防潮堤裏込め材	 内部応力に対する抵抗性と圧縮強度 (防潮堤は今後,求められる強度が高 くなる可能性がある。また,法面角度 によっては必要な強度は高くなる。) 	0.5~1.5	砂防ソイル セメント活用 ガイドライン
	 内部応力に対する抵抗性と圧縮強度 	1.5~3.0	砂防ソイル セメント活用 ガイドライン
2000 · · · · · · · · · · · · · · · · · ·	・内部応力に対する抵抗性と圧縮強度	3.0~6.0	砂防ソイル セメント活用 ガイドライン
堤体上流側の外部材	・内部応力に対する抵抗性と圧縮強度	6. 0~18. 0	砂防ソイル セメント活用 ガイドライン
Windowski a branching Windowski a branching Right Diagonal Windowski a branching Right Diagonal Right Diag	 安定な質量を確保すること 耐摩耗性 	18. 0	港湾施設の 技術上の基準 ・同解説
コンクリート ほ石(): 品程():分、紙気など コンク リート舗装	・すり減り抵抗性 ・曲げ強度	曲げ強度 4.5	舗装標準 示方書

表-1 本技術開発の成果を適用する構造物と部位および要求性能

7.2. 実験内容

7.2.1. 実験概要

図-1に本技術開発の検討フローを示す.

本技術開発では、コンクリートがれきを母材として、セメントと水を混合してセメント硬化体を製造 するために、まず、破砕したコンクリートがれきがその母材に成り得ることを粒度分布測定や吸水率測 定などの材料試験により確認した.次に、セメントと水を混合したときの練混ぜ状態と加振締固め性を 練混ぜ試験により確認した.練混ぜ試験では圧縮強度測定用の供試体も製作し、所定の材齢で圧縮強度 と密度を測定した.これらの結果から、実際の施工を想定した方法による大型供試体の製作を実機実験 として行った.最終的には、破砕したコンクリートがれきを母材として、セメントと水を混合したセメ ント硬化体の製造と施工方法を取りまとめ、構造物の要求性能に応じた材料が提供できる品質管理手法 を提案する.

なお、本技術開発にかかわる実験は、岩手県釜石市の災害廃棄物処理ヤードと、横浜市戸塚区の大成 建設技術センターにて実施した.

図-1 本技術開発の検討フロー

7.2.2. コンクリートがれきの要素実験

(1) 材料試験

表-2 にコンクリートがれきの材料試験内容を示す.材料試験は、粒度分布、密度・吸水率、単位容積 質量・実積率、および有害物質溶出量について行った.本技術開発では、コンクリートがれきを最大粒 径 80mm 程度に破砕し、この試料を用いて材料試験を行った.

試験に用いたコンクリートがれきは、まず、写真-1 に示すようにニブラを用いて数十センチの大きさに 切断した.これは、破砕機に投入できる大きさに調整し、長い鉄筋を切断して取り出すための前処理で ある.このようにして前処理されたコンクリートがれきは、写真-2 に示すようにダンプトラックで場内 運搬し、写真-3 に示す破砕機(日立建機社製自走式クラッシャー LT80J-2 型)で実験に供する試料を 製造した.この破砕機は、キャタピラによる自走が可能で、破砕後に排出されるがれきの最大寸法を 80mm 程度に調整するのに適している.ニブラで調整したコンクリートがれきは、写真-4、写真-5 に示 すようなジョークラッシャで破砕した.また、写真-6 に示すように、破砕後のがれきは磁選機を通るた め、磁性を有する金属の排除がある程度可能である.

破砕機から排出されるがれきの寸法は、ジョークラッシャの刃間隔を図-2に示すように調整すること によりある程度変えることができる.材料試験では、この刃間隔を 50、60、70mm の 3 水準とした. また、コンクリートがれきは表-3 に示す通り、見た目の状態から A、B、C の 3 通りに区分した. A は コンクリートがれきを主体とするもの、B はコンクリートがれきに加え、軽量ブロックやレンガ、瓦、 タイルなどの無機質系のがれきを比較的多く含むもの、C はコンクリートがれきに津波堆積物を比較的 多く含むもので、軽量ブロックなどもある程度含まれるものである.実際に集積されている状態は、C のものがほとんどであるが、ここでは、コンクリートがれきが多く偏在した場合や、軽量ブロック、レ ンガ、瓦、タイルなど無機質系のがれきが多く偏在した場合を想定して、A と B のケースでも材料試験 を行った.このようにして、コンクリートがれきの種類とジョークラッシャの刃間隔との組合せで 9 つ の試験ケースを設定した.それぞれの試験ケースは表-4 に示すように A50 から C70 の呼称記号で表す.

粒度分布は,試験ケースごとに破砕したがれきを用いて,骨材のふるい分け試験と微粒分量試験により測定した.このとき,適切な粒度分布であるかを確認するため,「砂防ソイルセメント活用ガイドライン(砂防ソイルセメント活用研究会編)2002.1」に記載されている砂防ソイルセメントへの適用事例から,工事の際に測定された粒度分布曲線の範囲を抜き出して評価の目安とした.また,微粒分量については,レディーミクストコンクリート用骨材の品質基準を評価の目安とした.さらに,ふるい分け試験とは別に,実際の工事の際に粒度分布を短時間で測定して,品質管理に反映させることを目的として,画像解析処理を用いた粒度分布推定も行った.図-3に本手法による粒度分布推定の方法を示す.この手法は,セメント,水と混合する前のコンクリートがれきを自由落下させ,そのときにデジタル画像を撮影して画像処理し,輪郭線の長さから粒径を推定するものである.

密度・吸水率,および単位容積質量・実積率は,粒径 80mm 以下を一括した試験方法がないため,こ こでは呼び寸法が 5mm のふるいに留まるものをコンクリート用骨材の粗骨材相当とし,通過するもの を細骨材相当として,それぞれコンクリート用骨材の試験方法に準じて測定した.なお,密度・吸水率 については,レディーミクストコンクリート用骨材の品質基準を評価の目安とした.単位容積質量・実 積率については,明確な品質基準はないが,一般的なコンクリート用骨材として用いられる細骨材や粗 骨材での値を目安とした.

有害物質の溶出は、重金属、塩分を対象に、コンクリートがれきから溶出(試験方法は環境庁告示13 号に準拠)するものと、セメント硬化体から溶出(試験方法はJSCE-G 575 に準拠)するものを測定し た.このうち重金属については、土壌の汚染に係る環境基準(環境庁告示46号)に定める規制物質で ある、カドミウム、鉛、六価クロム、ひ素、総水銀、セレン、ふっ素、ほう素、およびシアンを測定の 対象とした.

評価項目	試験名	試験方法
粒度分布	ふるい分け試験	0~80mm : JIS A 1102 骨材ふるい分け試験 0.075mm以下 : JIS A 1103 骨材の微粒分量試験
	画像解析試験	画像解析処理を用いた粒度分布推定
密度・吸水率	密度・吸水率試験	5~80mm:JIS A 1110 粗骨材の密度・吸水率試験方法 5mm以下:JIS A 1109 細骨材の密度・吸水率試験方法 試験時の含水率については, JIS A 1125に準拠する
単位容積質量 ・実積率	単位容積質量試験 実積率試験	JIS A 1104 骨材の単位容積質量及び実積率試験方法 5~80mm:試験用器 30リットル 5mm以下:試験容器 1~2リットル
有害物質	コンクリートがれき からの溶出試験	環境省告示第13号(産業廃棄物に含まれる金属等の検出方法)
溶出量*1	セメント硬化体 からの溶出試験	JSCE-G 575(硬化したコンクリートからの微量成分溶出試験方法)

表-2 コンクリートがれきの材料試験

*1:有害物質溶出量の基準値は、環境省告示第46号(土壌の汚染に係る環境基準について)に準拠する.

図-2 破砕機の刃間隔

コンクリート がれきの種類	見た目の状態 (含まれているもの)	破砕機の 刃間隔 _(mm)	本実駒 呼称	_険 での 記号
		50		A50
コンクリートがれき	コンクリートがれきを主体 とする	60	A	A60
		70		A70
	コンクリートがれきに加 え,軽量ブロックやレン	50		B50
コンクリートがれき +軽量ブロック		60	В	B60
	ガ、瓦を比較的多く含む.	70		B70
	コンクリートがれきに加	50		C50
コンクリートがれき + 津波堆積物	え,津波堆積物を比較的多 く会む、軽量ブロックなど	60	C	C60
	もいくらか含まれる.	70		C70

表-3 コンクリートがれきの種類

写真-1 ニブラによる破砕状況

写真-2 場内運搬状況

写真-3 破砕機全景

写真-4 破砕機がれき投入口部分

写真-5 破砕機ジョークラッシャ部分

写真-6 破砕機磁選装置部分

写真-7 破砕機へのがれき投入状況

写真-8 破砕機からのがれき排出状況

図-3 画像解析処理技術を用いた骨材の粒度分布推定例

(2) 小型ミキサによる練混ぜ試験

写真-9~写真-12 にコンクリートがれきとセメント,水との練混ぜ試験の状況を示す.また,表-4に 練混ぜたセメント混合物のフレッシュ試験項目を示す.小型ミキサによる練混ぜ試験は,2012年3月 と6月の2回で実施した.練混ぜ試験に用いたセメントは,1回目は普通ポルトランドセメントに高炉 スラグ微粉末を30%置換したものを結合材として使用した.一方,2回目は実機実験に使用したのと同 じ市販の高炉 B種セメントを使用した.また,コンクリートがれきとして,材料試験の結果からA50, B50,および C50 を用いた.試験ケースの詳細は,「7.3.試験結果」にて示す.

練混ぜは容量が150Lの傾胴ミキサを用いて、1バッチあたりの練混ぜ量を60Lとして行い、練混ぜ 性状を目視により確認した.また、練混ぜたコンクリートは、呼び寸法40mmのふるいでウェットスク リーニングして、スランプと加振締固め性を測定した.なお、本技術開発では、施工には振動ローラー を用いることを想定しているため、コンクリートがれきのセメント混合物は、目標スランプが0cmの超 硬練り仕様とし、加振締固め性は充填率98%に達するまでの時間が30秒程度となることを目安とした. ここでは、JSCE-F 508「超硬練りコンクリートの締固め性試験方法(案)」に記載されているとおり、 加振締固め性試験による充填率が98%に達した状態を完全充填とした.また、試験の一部では、有スラ ンプの仕様でも行った.

練混ぜ試験は、最初に加振締固め性が良好となる配合の選定を行った. 具体的には、水セメント比を 一定とし、単位水量と単位セメント量を調整して試験練りを繰り返した. 次に、S/A (練り混ぜたコン クリートがれき全質量 A に対する、5mm ふるいを通過するがれきの質量 S の比率で、通常のコンクリ ートの細骨材率 s/a に相当する値である. ただし、ここでは体積率ではなく、質量率を意味することか ら、大文字の A と S で表す.)が加振締固め性に及ぼす影響について、試験練りにより確認した. 超硬 練り仕様に対する試験時の水セメント比は 80~120%、S/A は 20~50%の範囲で変化させた. また、超 硬練りコンクリートの配合設計に際しては、コンクリートがれきの実積率に基づく間隙充填の指標 a、 βを参考にした. a は粒径 5mm 以下の細骨材相当のがれきの実積率から求まる間隙体積と、それを充 填するセメントペースト体積の比率を表す指数である. 一方、β は粒径 5mm を超える粗骨材相当のが れきの実積率から求まる間隙の体積と、それを充填するモルタル体積の比率を表す指数であり、いずれ も配合理論上は 1.0 を上回らなければ、完全充填が得られないことを表す指標となる. そのため、小型 ミキサによる練混ぜ試験では、a、β ともに 1.0 を上回る配合で試験練りした. ただし実機実験用の配 合では、2 配合のうちのひとつは、あえてより低セメント量の配合とするために、a が 1.0 を下回る配 合 (ベータは 1.0 を上回る配合)を選定した.

$$\alpha = (W / \rho_w + C / \rho_c) / (S / w_s - S / \rho_s)$$
 $\beta = (W / \rho_w + C / \rho_c + S / \rho_s) / (G / w_G - G / \rho_G)$
 $W : 単位水量 (kg/m^3)$
 $C : 単位セメント量 (kg/m^3)$
 $S : 単位細骨材量 (kg/m^3)$
 $\rho_w : 水の密度 (kg/l)$
 $\rho_c : セメントの密度 (kg/l)$
 $\rho_s : 細骨材の密度 (kg/l)$
 $\rho_G : 粗骨材の密度 (kg/l)$
 $w_g : 振動締固めによる表乾状態の細骨材の単位容積質量 (kg/l)$

写真-9 練混ぜ状況

写真-10 ウェットスクリーニング状況

写真-11 スランプ試験状況

写真-12 締固め性試験状況

	~	
評価項目	試験名	試験方法
スランプ	スランプ試験	JIS A 1101「コンクリートのスランプ試験方法」
締固め性	締固め性試験	JSCE-F 508「超硬練りコンクリートの締固め性試験方法(案)」

表-4 練混ぜたセメント混合物のフレッシュ試験項目

(3) 強度試験

写真-13,写真-14 に強度試験の状況を示す.また,表-5 に強度試験の内容を示す.強度試験は,圧縮強度試験(JIS A1108「コンクリートの圧縮強度試験方法」に準拠)と,曲げ強度試験(JIS A 1106「コンクリートの曲げ強度試験方法」に準拠)を行った.圧縮強度試験は、2012年3月と6月の2回の小型ミキサによる練混ぜ試験の際に採取した供試体で実施し、曲げ強度試験は6月の試験の際に採取した供試体で実施した.試験材齢は、3月に採取した供試体で7日と28日、6月に採取した供試体で28日とした.また、コンクリートがれきとして、材料試験の結果からA50、B50、およびC50を用いた.試験ケースの詳細は、「7.3.試験結果」にて示す.

圧縮強度試験の供試体寸法は φ 150×300mm,曲げ強度試験の供試体寸法は□150×150×530mm とし、練混ぜ試験で呼び寸法 40mm のふるいでウェットスクリーニングしたものを試料とした. 圧縮強度 試験用の供試体は、材齢 7 日で1体、材齢 28 日で3 体とし、曲げ強度試験用の供試体は材齢 28 日で4 体を試験した.曲げ強度試験用の供試体には、曲げ強度の向上を目的に、ポリプロピレン繊維(繊維断 面寸法 0.5×0.9mm,繊維長 48mm)を配合の外割りで 1.0Vol.% (9.1kg/m³) 添加したものも製作した.

供試体の締固めは、加振締固め性試験装置を用い、配合から供試体を成形するのに必要な試料の質量 を算定して、その量を型枠に充填することで製作した.養生は、製作から7日までは鋼製型枠に入れた 状態で封緘養生し、その後材齢28日までは標準養生とした.さらに圧縮強度測定時には、載荷試験前 に供試体の表乾状態での密度も測定した.

写真-13 圧縮強度試験状況

写真-14 曲げ強度試験状況

強度試験項目	試験材齢	供試体寸法	供試体数	備考
圧縮強度	7, 28日	ϕ 150 × 300mm	材齢 7日 1体 材齢28日 3体	
曲げ強度	28日	□150×150×530mm	4体	有機繊維混入 供試体も製作

表-5 強度試験内容

7.2.3. コンクリートがれきの実機実験

(1) 実機ミキサによる練混ぜ実験

写真-15 にコンクリートがれきとセメント,水との練混ぜに用いた実機ミキサを示す.また,写真-16 ~写真-19 にコンクリートがれきとセメント,水との実機ミキサによる練混ぜの状況を示す.コンクリートがれきとセメント,水との練混ぜには,地盤改良土の製造に用いられる自走式混合装置(日立建機 社製自走式土質改良機 SR-G2000 型)を用いた.コンクリートがれきは装置後方の投入口からバック ホーで供給し,セメントは装置中央のストックビンから供給され,水は外部に設けた水タンクから給水 される仕組みとなっている.練混ぜ開始前に,所定の配合で混合できるように各材料の供給量をキャリ ブレーションして,練混ぜではコンピューター制御で各材料が一定の割合で供給される.供給された材 料は,強制二軸ミキサにより連続的に混合され,ベルトコンベアで排出される.

表-6 に実機実験での配合を,**表-7** に練混ぜたセメント混合物のフレッシュ試験項目を示す.実機実 験での配合は,配合1(水セメント比105%,水158kg/m³,セメント150kg/m³,がれき1848kg/m³) と,配合2(水セメント比105%,水105kg/m³,セメント100kg/m³,がれき2011kg/m³)の二つとし, コンクリートがれきは,材料試験の結果からC50を用いた.また,練混ぜたセメント混合物のフレッシ ュ試験は,小型ミキサによる練混ぜ試験のときと同じく,スランプと加振締固め性について測定した. なお,配合1はαが1.20,βが1.59とともに1.0を上回る配合であるが,配合2はαが0.74と1.0を 下回り,βが1.33と1.0を上回る配合である.配合2については,「砂防ソイルセメント活用ガイドラ イン(砂防ソイルセメント活用研究会編)2002.1」に記載されている,砂防ソイルセメント活用ガイドラ が(砂防ソイルセメント活用研究会編)2002.1」に記載されている,砂防ソイルセメント活用ガイドラ はと単位水量を選定したものである.これは,本実験で採用している加振締固 め性は良好でないが,振動ローラーによる転圧を行えば,完全充填(加振締固め性試験で充填率98%に 達する充填)には及ばなくともある程度の充填性が得られ,要求される圧縮強度が比較的低いセメント 硬化体であれば適用できると考えたものである.なお,配合2で最密充填できた場合の理論上の充填率 は86.3%となるが,加振締固め性試験での実測充填率は81.1%と理論値よりも低いものであった.

写真-15 コンクリートがれき練混ぜ用の実機ミキサ

写真-16 実機実験の実施状況全景

写真-17 コンクリートがれきの 供給状況

写真-18 セメントのストック状況

写真-19 練混ぜ状況

表-6 実機実験での配合

ᆔᅀ	水セメント比	単位量(kg/m ³)		01	R	
<u>нс</u> (%)	(%)	水	セメント	がれき	u	β
配合1	105	158	150	1848	1.20	1.59
配合2	105	105	100	2011	0.74	1.33

表-7 糸	東混ぜたセメ	ン	ト混合物のフ	レツ	シュ	.試験項目
-------	--------	---	--------	----	----	-------

評価項目	試験名	試験方法
スランプ	スランプ試験	JIS A 1101「コンクリートのスランプ試験方法」
締固め性	締固め性試験	JSCE-F 508「超硬練りコンクリートの締固め性試験方法(案)」

(2) 転圧実験

写真-20~写真-22 に転圧実験の状況を示す.また,図-4 に実験ヤードの区割りと転圧実験ケースを, 表7.4.2-1 に転圧実験での測定項目を示す.転圧実験は、実機ミキサで練混ぜたコンクリートがれきの セメント混合物を写真-20 のように撒き出し、写真-21 のように 3 トン級ブルドーザ(キャタピラー三 菱社製ブルドーザ BD2H)を用いて、15cm の層厚で敷均し、これを 2 層重ねて 30cm の層厚で、写真 -22 のように 3 トン級振動ローラー(酒井重工業社製コンバインドローラーTW502S-1)で転圧した. この 30cm の層厚に仕上げる作業を1リフトとし、合計 60cm の厚さとなるように 2 リフトの転圧を行 った.

転圧実験のケースは、配合を2種類と転圧回数を2パターンの組合せで、合計4ケースとした.配合 は、表-8の実機実験配合で示したとおり、水セメント比は105%で一定として、単位セメント量を 150kg/m³と100kg/m³の2種類とした.転圧回数は、振動ローラーを振動させないで自重だけで転圧す る無振動転圧を2回と振動させながら転圧する有振動転圧を6回の計8回転圧するパターンと、無振動 転圧を2回と有振動転圧を8回の計10回転圧するパターンの2パターンとした.

転圧実験の際には、写真-23 に示すようにリフトごとに転圧による沈下量を測定した.また、2 リフトの転圧完了後には、写真-24 に示すように RI法(放射線測定法)による密度測定を行った.さらに転圧と測定の終了後は、写真-25 に示すように養生マットを敷設して湿潤にし、コアを採取する材齢 28日まで養生を行った.なお、測定の位置や頻度などの詳細は、「3.試験結果」にて示す.

写真-20 撒出し状況

写真-21 敷均し状況

写真-22 転圧状況

写真-23 沈下量計測状況

写真-24 RI 計測状況

写真-25 養生状況

図-4	実験ヤー	ドの区割り	と転圧実験ケー	-ス
-----	------	-------	---------	----

表-8	転圧実験測	定項	目
-----	-------	----	---

評価項目	試験名	試験方法	試験頻度
沈下量	沈下量測定	スタッフとレベルによる水準測量	転圧2回ごとに 各ケース6点
現地密度	RI試験 (放射線測定法)	RI(放射線)密度計測器による推定	第2リフト転圧後に 各ケース3点

(3) コア試験

写真-26~写真-29 にコア採取の状況を示す.また,表-9 にコア試験での測定項目を示す.コアは, 直径が φ 150mm と φ 250mm で長さ 600mm の 2 種類を採取した.採取したコアは,径と長さの比が 2.0 になるように切断,整形して密度と圧縮強度の測定を行った.ただし,コア採取の途中で折損した ものは,径と長さの比が可能な限り大きくなるように切断,整形して試験に供した.切断,整形したコ アは,径と長さ,および質量を測定して見掛けの密度を算出してから圧縮強度を測定した.なお,φ 150mm のコアに関しては,切断,整形前に水中質量も測定して真密度も求めた.圧縮強度については, JIS A 1107「コンクリートからのコアの採取方法及び圧縮強度試験方法」にしたがって測定し,径と長 さの比に基づく補正値を求めた.

写真-26 コア採取前状況

写真-27 コア採取状況


```
写真-28 コア外観 CASE2(C=100kg/m<sup>3</sup>)
```

写真-29 コア外観 CASE4(C=150kg/m³)

表-9 コア試験測定項目

評価項目	試験名	試験方法	試験頻度
コア真密度	水中質量からの 真密度測定	コア整形前の水中質量と気中質量から真密度 を算定する.	
コア見掛け密度	気中質量からの 見掛け密度測定	コア整形後の気中質量と体積から見掛けの密 度を算定する.	各ケース3本 以上を目標
コア圧縮強度	圧縮強度試験	JIS A 1107「コンクリートからのコアの採取 方法及び圧縮強度試験方法」に準拠する.	

7.3. 実験結果

7.3.1. コンクリートがれきの物性確認実験結果

(1) 材料試験結果

表-10 にコンクリートがれきの物性値を示す.ここでは、5mm 以上のがれき(粗骨材相当)と、5mm 以下のがれき(細骨材相当)に分けてそれぞれ評価を行った.ただし、後述の練混ぜ試験の配合につい ては、それぞれの質量率から、がれき全体の物性値を算出して検討を行った.なお、各物性試験は JIS 規準に準じて行った.

	A50	A60	A70	B50	B60	B70	C50	C60	C70
絶乾密度(g/cm ³)	2.30	2.31	2.26	1.95	1.84	1.91	2.26	2. 28	2.24
表乾密度(g/cm ³)	2.44	2.46	2.42	2.18	2.09	2.15	2.41	2.41	2.39
吸水率(%)	6.37	6.68	6.79	12.3	13.9	12.5	6.48	5.87	6.93
実積率(%)	59.1	59.7	62.8	60.5	62.0	63.9	61.5	61.4	60.3
単位容積質量(kg/l)	1.36	1.38	1.42	1.18	1.14	1.22	1.39	1.40	1.35
微粒分量(%)	0.20	4.00	0.70	0.90	1.10	2.30	2. 30	2.10	7.90
粗粒率(%)	7.49	7.94	7.85	7.44	7.97	7.97	7.37	7.36	7.71

表-10 コンクリートがれきの物性値 5mm 以上のがれき(知母材相当)

	A50	A60	A70	B50	B60	B70	C50	C60	C70
絶乾密度(g/cm ³)	2.17	2.10	2.10	1.95	2.11	1.96	2.05	2.11	1.95
表乾密度(g/cm ³)	2.41	2.4	2.35	2. 24	2.33	2.24	2.31	2.26	2.24
吸水率(%)	9.55	14.0	12.0	12.8	10.5	14.1	11.0	7.26	14.9
実積率(%)	68.2	70.5	68.6	65.6	64.0	65.8	63.4	58.3	63.1
単位容積質量(kg/ I)	1.48	1.48	1.44	1. 28	1.35	1.29	1.30	1.23	1.23
微粒分量(%)	10.3	8.80	18.0	8.30	8.20	18.5	22.5	20.3	20. 2
粗粒率(%)	2.11	2.08	2. 25	2.00	1.88	1.94	1.80	1.92	1.81

5mm 以下のがれき(細骨材相当)

1) ふるい分けによる粒度分布

i)ふるい分けの概要

図-5 にコンクリートがれきの粒度分布を示す.また,写真-30~写真-32 に刃間隔 50mm で破砕を行ったそれぞれのコンクリートがれき粒度別の破砕状況を示す.

ここでの A, B, C とは, 表-11 に示すように, コンクリートがれきの種類(A:コンクリートがれき を主体としたもの, B:コンクリートがれきに軽量ブロックが含まれているもの, C:コンクリートが れきに津波堆積物が含まれているもの)のことであり, その後ろの 50, 60 および 70 の数値は, 破砕機 の刃間隔(mm)を表している。例えば, B60 とは, 軽量ブロックを含むコンクリートがれきを刃間隔 60mm で粉砕したものである.また, 図中の凡例の参考範囲上側, 下側とは, 砂防ソイルセメントガイ ドラインにある既往実績の粒径の範囲を表している.

コンクリート系 がれきの種類	見た目の状態 (含まれているもの)	破砕機の 刃間隔 (mm)	本実験での 呼称記号	
		50		A50
コンクリートがれき	コンクリートがれきを主体 とする。	60	Α	A60
		70		A70
	コンクリートがれきに加	50	В	B50
コンクリートがれき +軽量ブロック	え、軽量ブロックやレン	60		B60
	カ, 瓦を比較的多く含む.	70		B70
	コンクリートがれきに加	50		C50
コンクリートがれき +津波堆積物	ス, 津波堆積物を比較的多 く含む, 軽量ブロックなど	60	C	C60
	もいくらか含まれる.	70		C70

表-11 検討ケース(コンクリートがれきの種類,破砕機の刃間隔)

粒径 80~40mm

粒径 40~20mm

粒径 20~10mm

粒径 10~5mm

粒径 5mm 以下 写真-30 コンクリートがれき A50 の粒度別の破砕状況

粒径 80~40mm

粒径 40~20mm

粒径 20~10mm

粒径 20~10mm

粒径 5mm 以下 写真-31 コンクリートがれき B50 の粒度別の破砕状況

粒径 80~40mm

粒径 40~20mm

粒径 20~10mm

粒径 10~5mm

粒径 5mm 以下 写真-32 コンクリートがれき C50 の粒度別の破砕状況

ii) コンクリートがれき A, B, C の粒度分布

図-6~図-8 には、コンクリートがれきの種類ごとの破砕機刃間隔と粒度分布の関係をそれぞれ示す. これらによれば、コンクリートがれきの種類によらず、刃間隔が狭い方が細かくなる傾向が認められ、 破砕機の刃間隔を 50mm としたものは砂防ソイルセメントガイドラインにある既往実績の参考範囲内 にあるが、その範囲内でも下側近傍に分布しているものが多く見られた.

また、津波堆積物を含むコンクリートがれき C は刃間隔の如何に拘らず、既往実績の参考範囲内にあり、特に粒径 1mm 以下の累積通過百分率が他のものより大きく、津波堆積物が多く含まれていることが影響していると考えられる.

iii) 粒度分布の再現性

コンクリートがれきの粒度分布のばらつきを把握するため、コンクリートがれきC50を対象として、 ふるい分けによる粒度分布の測定を10回行った. 図-9に結果を示す. 測定に用いた試料は、コンクリ ートがれき Cを集積場から運搬し、破砕機から排出された試料を鋼板で10等分したものであり、それ ぞれに対して粒径 5~80mmの範囲でふるい分け試験を行った.

粒径ごとに若干のばらつきは認められるが、ほぼ同様な分布状況であり、同じ場所から採取したコン クリートがれきを破砕した場合の粒度分布のばらつきは小さいことが確かめられた.

iv) 破砕回数の影響

コンクリートがれきの粒度分布を既往の実績の範囲内とするためには,破砕機による破砕回数も重要なパラメータと考えられる.図-10 に破砕回数と粒度分布の関係を示す.この図は,コンクリートがれきCに対して,刃間隔 50mm による破砕を1回行った場合と2回行った場合を比較している.

この結果から分かるように,破砕回数を多くすると,細粒分が多くなる状況が確認できる.また,破 砕回数が1回または2回のいずれも,粒度分布は参考範囲内にあるが,粒度40mm以上を見てみると, 破砕回数を2回としたものは実積範囲の上限にあるため,破砕回数としては2回が限度であると考えら れる.

本技術開発の目的である、コンクリートがれきの迅速な大量処分方法として、破砕に要する費用や時 間を考慮すると、破砕回数は1回でよいと判断した.

10

ふるいの呼び寸法 (mm)

図-10 破砕回数と粒度分布の関係

100

0 + 1

2) 画像解析処理による粒度分布推定実験

i) 画像処理の概要

図-11 に画像解析処理による粒度分布推定の手順を示す.本画像解析処理技術は、デジタルカメラで 撮影した画像から、各粒子の面積を算出し、所定の粒径毎の合計面積を求める.求められた粒径毎の合 計面積に予め把握してある粒径毎の重量換算係数を乗じて求められる値から、加積通過率(%)を算出 し、粒度分布曲線を描写するものである.

ii) 画像撮影の方法

写真-33, **写真-34** および図-12 に実験に使用した装置を示す.また,画像撮影の状況を図-13 に示す. コンクリートがれきはベルトコンベアを使って落下させ,その状況をデジタルカメラにて撮影する. その際に整流板を通過させ,ベルトコンベア上で重なり合った材料を薄層化させる.また,画像の撮影 は整流板通過後に行うが,材料抽出を容易にするため,撮影する背景板に発光するバックスクリーンを 用いる.

写真-33 実験装置全体状況

写真-34 実験状況

図-12 実験装置概念図

ベルトコンベアの上に 試料をセット

画像撮影

ベルトコンベアの稼働

図-13 画像撮影の状況

iii) 画像解析処理方法

撮影した画像の解析処理方法を以下に示す.

① コンクリートがれきを白色,周囲を黒色とした二値化処理を行う.

② がれき粒子の長辺と短辺を求め、その平均から粒度の判定を行う.

がれき粒径=(長辺+短辺)/2

③ 既知の1ピクセルあたりの面積から,がれき粒度範囲ごとの面積を算出する.また,粒度範囲ごと に色分けを行う.

④ 総面積に既知のふるい分けのデータより求めた重量換算係数を乗じて、粒度範囲ごとの重量を算出し、粒度分布を求める.

iv)実験ケース

表-12 および図-14 に実験に使用した粒度分布を示す. コンクリートがれきの種類は C シリーズをベースとし、ふるい分けにより求めた粒度分布、ならびにその粒度分布に対して、粗粒分あるいは細粒分を調整した粒度分布の計 7 ケースについて測定し、画像解析法により推定された粒度分布と既知の粒度分布を比較することで画像解析法の精度の検証を行った.また、図-15 に実験試料の作製手順を示す. 粗粒分または細粒分の量は、細骨材質量率(S/A)により調整した.

粒度分布の状態	Case No.	細骨材質量率 S/A(%)	80-40mm	40-20mm	20-10mm	10-5mm	5mm以下
粗粒分を増加 させた状態	1	20	100	91	67	28	20
	2	25	100	92	69	33	25
	3	30	100	92	71	37	30
ふるい分けの状態	4	31.5	100	92	72	39	31.5
細粒分を増加 させた状態	5	35	100	93	73	42	35
	6	40	100	93	75	46	40
	7	45	100	94	77	51	45

表-12 実験ケースごとの累積通過重量百分率

図-14 実験ケースごとの粒度分布

図-15 実験試料の製作手順

v)実験結果

図-16~図-22 にそれぞれの実験ケースにおいて画像解析により求めたコンクリートがれきの粒度分 布を示す.各ケースとも4回の計測結果を示している.また,調整した粒度分布結果,4つのデータの 平均粒度分布,および実際の粒度分布から±3%の範囲についても併せて示した.

いずれの実験ケースにおいても、画像解析により求めた4つのデータの平均粒度分布は、実際のふるい分けによる粒度分布(Case4)、あるいは粗粒分または細粒分を調整した粒度分布の概ね±3%の範囲内にある.

なお、画像撮影から粒度分布曲線を得るまでに要する時間は、1回の計測で5分程度であった.

図-16 画像解析により求めたコンクリートがれきの粒度分布 (Case1)

図-17 画像解析により求めたコンクリートがれきの粒度分布 (Case2)

図-18 画像解析により求めたコンクリートがれきの粒度分布 (Case3)

図-19 画像解析により求めたコンクリートがれきの粒度分布 (Case4)

図-20 画像解析により求めたコンクリートがれきの粒度分布 (Case5)

図-21 画像解析により求めたコンクリートがれきの粒度分布 (Case6)

図-22 画像解析により求めたコンクリートがれきの粒度分布 (Case7)

3) 密度・吸水率

図-23 にそれぞれのコンクリートがれきにおける密度・吸水率を示す.通常のコンクリート用骨材(密度:2.60g/cm³程度,吸水率:3.0%以下)に比べて,表乾密度は小さく,吸水率は大きくなった.また, コンクリートがれき B の密度・吸水率は他のがれきに比べて,密度は小さく吸水率が大きくなった.こ れは,粒径 5mm 以上の軽量ブロックの混入が影響を及ぼしていると考えられる.

コンクリートがれき A および C の絶乾密度は、粒径 5mm 以上(粗骨材相当)と 5mm 以下(細骨材 相当)の値の差が大きい.しかし、表乾密度になるとその差は小さくなる.これは、粒径 5mm 以下(細 骨材相当)のコンクリートがれきの吸水率が大きいことに起因していると考えられる.これに対して、 コンクリートがれき B では、粒径 5mm 以上と 5mm 以下の絶乾密度の差は、表乾密度でもほぼ同程度 であった.これは、それぞれの吸水率がほぼ同程度であることが理由として考えられる.

なお,後述のとおり,破砕後のコンクリートがれきの微粒分量は,通常のコンクリート用骨材に比べ てかなり多いが,表乾状態はコンクリート用骨材と同じく判断できたため,密度や吸水率はコンクリー ト用骨材の試験方法に準じてよいと考えられる.

図-23 それぞれのコンクリートがれきの密度・吸水率

図-24 には、コンクリートがれきの表乾密度と吸水率の関係を示す. 粒径 5mm 以上(粗骨材相当) のコンクリートがれきにおいては、表乾密度が大きくなるにしたがって吸水率は線形的に小さくなる傾 向が認められた. これに対して、5mm 以下の細骨材に相当するコンクリートがれきの場合では、粒径 5mm 以上で認められた線形的な傾向はなく、大きくばらつく結果を示した.

4) 実積率・単位容積質量

図-25 にコンクリートがれきの単位容積質量・実積率を示す.単位容積質量は、破砕装置の刃間隔の 影響は殆ど見られないものの、軽量ブロックを含んでいるコンクリートがれき B が幾分小さい.また、 粒径 5mm 以上と 5mm 以下で殆ど差が認められなかった.

一方,実積率について見てみると,粒径 5mm 以上と 5mm 以下の差は大きい.これは,実積率は単 位容積質量を絶乾密度で除しているため,絶乾密度の差によるものと考えられる.

コンクリートがれきの種類の如何に拘らず, 粒径 5mm 以上の粗骨材相当, 粒径 5mm 以下の細骨材 相当のいずれも, 実積率は 60~70%の範囲内にあり, 通常のコンクリート用骨材と同程度であった.

37

5) 微粒分量

図-26 にコンクリートがれきに含まれる微粒分量を示す.いずれのコンクリートがれきにおいても微 粒分は、通常のコンクリート(3%以下)よりも多くなる結果であった.特に、コンクリートがれき C (津波堆積物を含むコンクリートがれき)の微粒分量は多く、津波堆積物由来の微粒分が含まれている と考えられる.また、コンクリートがれき A および B を刃間隔 70mm で破砕した A70、B70 は、刃間 隔 50mm および 60mm よりも微粒分量が多く、津波堆積物が多く混入していた可能性があると考えら れる.

6) コンクリートがれきに含まれる混入物について

表-13 および図-27 にコンクリートがれきに含まれる種類別質量混入率を示す.また,写真-35~写真 -38 には、それぞれのコンクリートがれきに含まれていた混入物の状況を示す.ここでのコンクリート がれきに含まれる混入物は、粒径 5mm 以上(粗骨材相当)の軽量ブロック,瓦、ガラス、プラスチッ ク、木くず、鉄および紙類である.

実験では、粒径 5mm 以上に相当するコンクリートがれき 30kg に対する質量割合として評価を行った.

コンクリートがれきの種類の如何に拘らず,8割以上の混入物がコンクリート主体のものであった. また、コンクリートがれきBは、軽量ブロックが他のがれき種類よりも多く含まれていた.いずれにしても、コンクリートがれきに含まれる大部分がコンクリートを主体とした材料であり、他の材料の混入は少ないことから、コンクリートがれき処理施設内の集積場にて、ある程度分別された結果であると考えられる.

表-14 および図-28 に、コンクリートがれき中に含まれている混入物の容積割合を示す. ここでの容 積割合は、混入物それぞれの一般的な密度から算出したものである. なお、密度は、軽量ブロックは 1.86g/cm³の実測値とし、その他の瓦、ガラス、プラスチック、木くず、鉄および紙類は一般的な密度 とした. この結果、木くずの割合が幾分大きくなるが、全体的には質量割合と同じく、8 割以上の混入 物がコンクリート主体のものであった.

また,粒径 5mm 以下相当の混入物については,実際に測定は行っていないが,写真-30~写真-32 を 見ると,コンクリート以外の混入物は少ないと思われる.これは,今回使用した破砕機では,コンクリ ートがれきをすり合わせるような破砕方法であることが要因であると考えられる.

	コンクリート がれき	軽量ブロック	瓦	ガラス	プラスチック	木くず	鉄	紙類				
A70	91.58	8. 22	0.10	0.02	0.02	0.04	0.02	0.00				
B70	84.84	12.35	2.39	0.02	0.08	0.23	0.08	0.00				
C70	89.20	7.52	2. 21	0.07	0.28	0.44	0.28	0.00				
C50	98.13	1.15	0.01	0.03	0.06	0.42	0.06	0.14				

表-13 コンクリートがれきに含まれる種類別質量混入率

図-27 コンクリートがれきに含まれる種類別質量混入率

	コンクリート がれき	軽量ブロック	瓦	ガラス	プラスチック	木くず	鉄	紙類				
A70	89.78	9.92	0.10	0.02	0.03	0.15	0.00	0.00				
B70	81.85	14.65	2.41	0.02	0.14	0.91	0.02	0.00				
C70	86.47	8.97	2.24	0.06	0.46	1.71	0.08	0.00				
C50	96.42	1.36	0.01	0.03	0.10	1.67	0.02	0.39				

表-14 コンクリートがれきに含まれる種類別容積混入率

図-28 コンクリートがれきに含まれる種類別容積混入率

粒径 10~5mm

粒径 20~10mm

粒径 40~20mm

粒径 80~40mm

写真-35 コンクリートがれき A70 に含まれていた混入物の状況

粒径 10~5mm

粒径 20~10mm

粒径 40~20mm

粒径 80~40mm

粒径 10~5mm

粒径 20~10mm

粒径 40~20mm

粒径 80~40mm

粒径 10~5mm

粒径 20~10mm

粒径 40~20mm

粒径 80~40mm

写真-38 コンクリートがれき C50 に含まれていた混入物の状況

7) 有害物質溶出量

i)試験方法

表-15 に有害物質の溶出試験方法を示す.有害物質の溶出試験は、コンクリートがれき(津波堆積物 を含む)とセメント硬化体(コンクリートがれきとセメント・水の混合物が硬化したもの)について行った.

コンクリートがれきに対する有害物質の溶出試験方法は,環境庁告示第 13 号(産業廃棄物に含まれ る金属等の検定方法)と,環境庁告示第 46 号(土壌の汚染に係わる環境基準について)が参考となる が,「コンクリートからの微量成分溶出に関する現状と課題(土木学会コンクリートライブラリー111 号)」では、コンクリート解体材の再生クラッシャランについて,環境庁告示第 13 号に準拠しているこ とから、本検討でもこれに準拠することとした.一方、セメント硬化体に対する有害物質の溶出試験方 法は、土木学会規準 JSCE-G 575(硬化したコンクリートからの微量成分溶出試験方法)のタンクリー チング試験に準拠して測定した.

いずれの試験でも,評価項目は環境庁告示第46号に定める成分,すなわち,カドミウム,鉛,六価 クロム,砒素,総水銀,セレン,ふっ素,ほう素,シアンとし,基準値もこれに定める値とした.また, 環境庁告示第46号の評価項目には無いが,溶出検液のpHと塩素イオン濃度についても,セメント硬 化体製造への影響の観点から評価項目に加えた.

分析対象	試験方法	評価基準	評価項目
コンクリートがれき (津波堆積物を含む)	環境庁告示第13号 (産業廃棄物に含まれる 金属等の検定方法)	環境庁告示第46号	カドミウム,鉛,六価クロム, 砒素,総水銀,セレン,
セメント硬化体	土木学会規準JSCE-G 575 (硬化したコンクリートからの 微量成分溶出試験方法(案))	、工場の方案に除る 環境基準について)	ふっ素, ほう素, シアン (pH, 塩素イオン) ^{*1}

表-15 有害物質の溶出試験方法

*1:pH, 塩素イオンは環境庁告示46号に無い項目

ii) 溶出試験試料

表-16 に溶出試験試料の種類を示す.また,写真-39 に検液製作の振とう状況とタンクリーチング状 況を,写真-40に振とう後の検液を示す.

津波堆積物を含むコンクリートがれきについては、種類 A, B, C を破砕機の刃間隔 70mm で破砕し た試料を, JIS Z8801 に定めるふるいで粒径が 0.5mm 以上 5mm 以下になるようにふるい分けたもの を試験に供した.また,津波堆積物のみを対象とした試料も同様にふるい分けして試験に供した.一方, に供した.いずれの試料もそれぞれ2検体ずつ試験を行った.また、セメント硬化体については、溶出 開始から24時間後と48時間後の2水準で試験を行った.

衣-10 浴口試験試料の裡類										
分析対象	試料の種類	数量								
コンクリートがれき (津波堆積物を含む)	コンクリートがれきの種類:A, B, C 破砕機の刃間隔:70mm	3試料 (6検体)								
津波堆積物のみ	粒径5mm以下の砂成分のみ	1試料 (2検体)								
セメント硬化体	水セメント比:100% (供試体寸法 <i>φ</i> 150×200mm)	1試料 (2検体)								

16、次山寺 時寺 小の 毛 新

※環告 13 号 検液製作振とう状況 ※JSCE-G 575 タンクリーチング状況 写真-39 検液製作状況

コンクリートがれき:C70 写真-40 検液

津波堆積物

iii) 溶出試験結果

表-17 にコンクリートがれきおよび津波堆積物からの溶出量を,表-18 にセメント硬化体からの溶出 量を示す.環境基準は環境庁告示第46号に示す環境基準とした.ただし,カドミウムについては,地 下水環境基準の0.003mg/L以下とした.

コンクリートがれきおよび津波堆積物からの溶出量は、がれきの種類 A, B, C のいずれも、六価ク ロムやカドミウムなどの有害物質は環境基準を下回っており、今回の実験で使用したコンクリートがれ きに関しては、有害物質の溶出が周辺環境に及ぼす影響はないと考えられる.ただし、コンクリートが れきは通常の骨材に比べると pH が若干高くなる傾向を示した.また、津波堆積物は塩分を多く含んで いると推察されたが、今回の実験に限っては少量であった.

セメント硬化体からの有害物質の溶出量はコンクリートがれきおよび津波堆積物の結果と同様,今回 のコンクリートがれきを用いたセメント硬化体に関しては,有害物質の溶出はほとんどないことが確か められた.

				コンクリー								
測定物質 /測定項目	環境基準 ^{*2} (mg/L以下)	A70		В70		C	C70		隹積物	分析機器	分析手法*3	備考
		1	2	1	2	1	2	1	2			
カドミウム	0.003	0.001以下	ICP	JISK0102								
鉛	0. 01	0.001以下	0.001以下	0.001以下	0.001以下	0.001以下	0.001以下	0.002	0.007	ICP	JISK0102	
六価クロム	0. 05	0.005以下	原子吸光	JISK0102								
砒素	0. 01	0. 002	0.002	0.002	0.002	0.002	0.002	0.004	0. 004	ICP	JISK0102	
総水銀	0.0005	0.00005以下	原子吸光(水銀専用)	JISK0102								
セレン	0. 01	0. 001	0.001以下	0.006	0.004	0.001	0.001以下	0.001以下	0.001以下	ICP	JISK0102	
ふっ素	0.8	0. 343	0.542	0.652	0. 553	0. 424	0. 446	0. 154	0.149	IC	JISK0102	
ほう素	1.0	0.056	0.01以下	0.110	0. 039	0.013	0. 008	0. 085	0.055	ICP	JISK0102	
シアン	検出されないこと	未検出	吸光度	JISK0102								
рН	-	11.65	11.95	11.66	11.86	11.38	11.39	9.64	9.15	pHメーター (ガラス電極)	JISK0102	
電気伝導度	-	200	245	128	187	131	133	15. 17	9.95	電気伝導度計	JISK0102	海水:4800ms/m程度
CI-	-	84. 7	91.1	53.1	59.7	59.4	82.1	31.9	32.8	電位差滴定装置	JCI-SC5	海水:13400mg/L程度

表-17 コンクリートがれきおよび津波堆積物からの有害物質溶出量

*1:環境庁告示13号(産業廃棄物に含まれる金属等の検出方法)に準拠し、試料作製、試料液準備、溶出を行った.

*2:環境庁告示 46 号(土壌の汚染に係わる環境基準)に準拠した.ただし、カドミウムについては、地下水環境基準の 0.003mg/L 以下(環告 46 号: 0.01mg/L

以下)とした.

*3:環境庁告示 18 号に記載されている, JIS K 0102(工場排水試験方法)に準拠し、測定を行った.ただし、Cl については JCI-SC5 に準拠した.

			セメント硬化体	本からの溶出量				
測定物質 /測定項目	環境基準 ^{*2} (mg/L以下)	供討	体①	供討	(体2)	分析機器	分析手法*3	備考
		24時間後	4時間後 48時間後 24時間後 48時間後					
カドミウム	0.003	0.001以下	0.001以下	0.001以下	0.001以下	ICP	JISK0102	
鉛	0. 01	0.001以下	0.001以下	0.001以下	0.001以下	ICP	JISK0102	
六価クロム	0.05	0.005以下	0.005以下	0.005以下	0.005以下	原子吸光	JISK0102	
砒素	0. 01	0. 002	0. 002	0. 002	0.002	I CP	JISK0102	
総水銀	0.0005	0.00005以下	0.00005以下	0.00005以下	0.00005以下	原子吸光(水銀専用)	JISK0102	
セレン	0. 01	0.001以下	0.001以下	0.001以下	0.001以下	I CP	JISK0102	
ふっ素	0.8	0.318	0.156	0.327	0.161	IC	JISK0102	
ほう素	1.0	0.01以下	0.01以下	0.01以下	0.01以下	ICP	JISK0102	
シアン	検出されないこと	未検出	未検出	未検出	未検出	吸光度	JISK0102	
рН	-	11.67	11.44	11.72	11.44	pHメーター(ガラス電極)	JISK0102	
電気伝導度	-	89.3	52.7	93.4	51.8	電気伝導度計	JISK0102	海水:4800ms/m程度
CI	-	50.1	42.1	33.9	42.4	電位差滴定装置	JCI-SC5	海水:13400mg/L程度

表-18 セメント硬化体からの有害物質の溶出量

*1: JSCE-G 575-2005 (タンクリーチング試験) に準拠し, 試料作製, 試料液準備, 溶出を行った.

*2:環境庁告示 46 号 (土壌の汚染に係わる環境基準)に準拠した.ただし、カドミウムについては、地下水環境基準の 0.003mg/L 以下 (環告 46 号: 0.01mg/L

以下) とした.

*3:環境庁告示18号に記載されている,JISK0102(工場排水試験方法)に準拠し、測定を行った.ただし、CliについてはJCI-SC5に準拠した.

8) 材料試験のまとめ

コンクリートがれきの材料特性を明らかにすることを目的として,幾つかの材料試験を実施した. 試験に用いたコンクリートがれきは、コンクリート主体のもの、コンクリートがれきに軽量ブロックが含まれているもの、およびコンクリートがれきに津波堆積物が含まれているものの3種類とし、破砕機刃間隔を50,60および70mmと変化させて検討を行った.以下に得られた結果を示す.

・ふるい分けによる粒度分布の結果より,移動式粉砕機の刃間隔が狭くなると細粒分が多くなる傾向が 認められ,破砕機の刃間隔を50mmとしたものは,がれきの種類によらず,「砂防ソイルセメント活用 ガイドライン」の既往実績の粒度範囲内にあることを確認した.また,破砕回数としては,破砕の費用 と時間を考慮すると1回でよいと判断した.

・画像解析処理によるコンクリートがれきの粒度分布の推定結果は、実際のふるい分けによる粒度分布の概ね±3%の範囲内にあり、画像解析処理技術による粒度推定ができることが確かめられた.また、1回の処理に要する時間は5分程度であった.

・通常のコンクリート用細骨材および粗骨材と比較して、コンクリートがれきの表乾密度は小さく、吸水率は大きく、含水率も高くなることがわかった.これは、粒径5mm以下に含まれる微粒分が10~23% と多いことによると推察される.ただし、通常のコンクリート用骨材と同様に表乾状態は判断でき、密 度や吸水率などは、コンクリート用骨材に関する試験方法に準じて評価できる.また、軽量ブロックを 多く含むコンクリートがれきの密度・吸水率は、含有量が少ない場合に比べて密度は小さく、吸水率は 大きくなることがわかった.

・コンクリートがれきに含有されている混入物として、本実験では、軽量ブロック、瓦、ガラス、プラ スチック、木くず、鉄および紙類を確認したところ、多くがコンクリートを主体としており、他の材料 の混入は少ないことが確かめられた.これは、コンクリートがれきが集積の時点で、ある程度分別され ているためと考えられる.

(2) 小型ミキサによる練混ぜ試験結果

1) 実験概要

小型ミキサによる練混ぜ試験は,締固め性試験の充填率 98%以上を確保できる影響要因を明らかにすることを目的として検討を行った. 土木学会規準 JSCE-F 508「超硬練りコンクリートの締固め性試験方法(案)」では,充填率 98%に到達した時点を締固め完了,すなわち完全充填としており,その時の締固め完了仕事量を E98と定義している.ここでは,充填率 98%以上を完全充填と定義し, E98を完全充填時の締固めエネルギーとする.

表-19 にセメント混合物の評価項目を示す.セメント混合物とは,コンクリートがれきとセメントと 水を練り混ぜた,まだ固まらない状態のものであり,通常のコンクリートにおけるフレッシュコンクリ ートに相当するものである.一方,セメント混合物硬化後は,セメント硬化体と称する.

練上がり時にスランプ試験,締固め性試験およびセメント混合物の温度を測定し,練上がり性状や締 固め性状を確認した.

図-29 に練混ぜにおける材料投入の順序を示す.使用した小型ミキサは容量 1500 の傾動式ミキサで, 練混ぜ量は 600 とした.練混ぜ時間はコンクリートがれきおよび粉体を投入して 30 秒の空練りを行っ た後に,水を投入してから練混ぜ性状が安定するまでの 90 秒間練り混ぜてから排出した.

また,写真-41に練混ぜ状況および評価項目の試験状況を示す.

____表−19 コンクリートがれきを用いたセメント混合物の評価項目

評価項目	試験名	試験方法
スランプ	スランプ試験	JIS A 1101 「コンクリートのスランプ試験方法」
締固め性状	締固め性試験	JSCE-F 508 「超硬練りコンクリートの締固め性試験方法(案)」
セメント混合物温度	_	温度計による

図-29 練混ぜにおける材料投入の順序

粉体, コンクリートがれきの練混ぜ状況

水投入後の練混ぜ状況

排出後の練混ぜ状況

スランプ試験

締固め性試験

締固め性試験型枠脱型後

写真-41 練混ぜ状況および評価項目の試験状況

2) 練混ぜ性状

表-20 に配合および練混ぜ試験の結果を示す.小型ミキサによる練混ぜ試験は,2012年3月と6月に 実施した.なお,粉体として,2012年3月は普通ポルトランドセメントに高炉スラグ微粉末を30%置 換した,いわゆる高炉セメントA種相当とし,2012年6月では市販の高炉セメントB種を使用した. 練混ぜ試験の結果,コンクリートがれきを用いた場合でも完全充填できるスランプ0cmの超硬練り配合 のセメント混合物を製造することができることが確かめられた.

ここで、表中の語句について以下に示す. α 、 β とは、充填性の指標であり、以下の式に示される. α は粒径 5mm 以下の細骨材相当のがれきの実積率から求まる間隙体積と、それを充填するセメントペースト体積の比率を表す指数である. 一方、 β は粒径 5mm を超える粗骨材相当のがれきの実積率から 求まる間隙の体積と、それを充填するモルタル体積の比率を表す指数であり、いずれも配合理論上は 1.0 を上回らなければ、完全充填が得られないことを意味する. また、締固め性試験の初期充填率とは振動 締固め開始時の充填率であり、セメント硬化体完全充填時の理論上の高さに対する締固め開始時の試料 高さの割合である.

 $\alpha = (W / \rho_W + C / \rho_C) / (S / w_S - S / \rho_S)$ $\beta = (W / \rho_W + C / \rho_C + S / \rho_S) / (G / w_G - G / \rho_G)$ $W : 単位水量 (kg/m^3)$ $C : 単位セメント量 (kg/m^3)$ $S : 単位細骨材量 (kg/m^3)$ $\rho_w : 水の密度 (kg/l)$ $\rho_c : セメントの密度 (kg/l)$ $\rho_G : 細骨材の密度 (kg/l)$ $w_S : 振動締固めによる表乾状態の細骨材の単位容積質量 (kg/l)$ wG : 振動締固めによる表乾状態の粗骨材の単位容積質量 (kg/l)

				単位量 (kg/m3)						練混ぜ性状]		
		水結合材比	細骨材質量比				□ □	ンクリート	がれき	N	ß		硬化体	ャッ우수	完全充填時の	
		(%)	(%)	水	セメント	高炉スラグ	5mm12 F	5m	m以下	, "	μ	(cm)	温度 (℃)	初期尤項率 (%)	締固めエネルギー (J/L)	
								がれき	津波堆積物							-
	No. 1	100	33. 2	130	91	39	1299	623		1. 03	1.56	0	5	70. 4	E98にならず	_
	No. 2	100	32. 4	130	91	39	1299	623		1. 03	1.56	0	7	72. 5	E98にならず	_
	No. 3	100	32. 4	150	105	45	1257	602		1. 22	1.68	0	6	75	22. 4	_
	No. 4	100	32. 4	140	98	42	1278	612	—	1. 12	1.62	0	6	72. 5	64. 7	_
	No. 5	100	32. 4	140	98	42	1278	612	_	1. 12	1.62	0	9	80.6	70. 7	
	No. 6	100	20. 0	140	98	42	1519	401	_	1. 81	1.06	0	10	81.7	E98にならず	
	No. 7	100	25. 0	140	98	42	1420	474	_	1. 45	1.26	0	9	80. 8	236. 3	
	No. 8	100	27. 8	140	98	42	1367	526	—	1. 31	1. 39	0	9	87. 2	4. 98	
	No. 9	100	23. 0	140	98	42	1459	436	—	1. 58	1. 18	0. 5	9	86. 2	5. 35	
	No. 10	100	27.8	140	98	42	1367	526	—	1. 31	1.39	0	9	82. 8	25. 9	
2012年	No. 11	100	27.8	135	95	41	1379	531	—	1. 25	1.36	0	7	82. 8	9.4	
3月実施	No. 12	100	27.8	135	95	41	1379	531	_	1. 25	1.36	0	7	3	則定なし	
	No. 13	90	27.8	135	105	45	1370	527	_	1. 29	1. 38	0	6	84. 4	17. 1	
	No. 14	80	27. 8	135	118	51	1359	523	_	1. 35	1.40	0	6	83.6	9.7	1
	No. 15	100	23. 5	135	95	41	1433	440	_	1. 98	1.16	0	4	81.5	E98にならず	1
	No. 16	100	26. 4	135	95	41	1303	467	_	1.56	1.32	0.5	4. 5	86	4. 3	1
	No. 17	100	30. 0	135	95	41	1339	450	124	1. 52	1.44	0	6	92. 4	2. 9	1
	No. 18	100	40. 0	135	95	41	1151	451	316	1. 14	1.99	0.5	6.5	84. 4	5. 1	
	No. 19	60	50. 0	180	210	90	806	448	358	1. 28	3. 56	4	9	;	則定なし	- 充填率98%
	No. 20	100	27. 8	125	88	38	1402	557	_	1. 14	1. 31	0.5	8	84. 6	25. 9	- に到達しな い配合の加 - 振3分時の エネルギー
	No. 21	100	24. 0	125	88	38	1475	466	_	1. 32	1.14	0	8	83. 8	26. 2	
	No. 22	100	30. 0	125	88	38	1357	601	_	1.06	1.41	0.5	7	87.3	24.8	
	No. 23	100	35.5	125	1	25 [%]	1254	690	_	0. 92	1.42	0	18	;	L 則定なし	
	No. 24	100	35.5	135	1	35 [%]	1234	679	_	1. 02	1.47	0	18	;	<u></u> 則定なし	_
	No. 25	100	35.5	145	1	45 [*]	1213	668	_	1.11	1. 52	0	18.5	75.6	E98にならず	95.13
	No. 26	100	35.5	155	1	55 [*]	1193	657	_	1. 21	1. 58	0	18	76. 1	123. 4	_
	No. 27	111	8040抜き	172	1	55 [%]			_	1, 11	1. 52	0	19	;	L 則定なし	
	No. 28	110	36.7	149	1	35 [*]	1190	690	_	1.07	1. 58	0	19	;	 則定なし	92.46
	No. 29	110	36.7	165	1	50 [%]	1158	671	_	1. 23	1.67	0.5	20	82. 7	34. 8	
	No. 30	105	36.7	158	1	50 [%]	1169	678		1, 17	1, 64	0	22	77.6	70. 4	
	No. 31	100	36.7	150	1	50 [%]	1180	684	_	1. 12	1.61	0	22	77	 E98にならず	93, 24
	No. 32	100	36.7	158	1	58 [%]	1164	675	_	1 20	1 65	0	22	75	 F98にならず	95.36
	No. 33	100	36.7	158	1	58 [%]	1164	675	_	1 20	1 65	0	21 5	78.6	76_1	_
	No. 34	120	36.7	120	1	00*	1250	725		0.81	1 43	0	20	72 6		82 77
2012年	No. 35	105	35.8	158	1	50 [%]	1169	678	_	1 17	1 64	0	19	82	33	
6月実施	No. 36	105	35.8	158	1	50 [%]	1169	678		1 17	1 64	0	20	02	。 副定なし	
	No. 37	105	35.8	105	1	00*	1292	720		0.74	1.33	0	20	72.6	F98にならず	81 12
	No. 38	106	28.5	130	1	00 22%	1387	553		1 18	1 13	0	20 5	73.6		88.02
	No. 30	105	20.5	131	1	22	1404	533		1.10	1.13	0	20.5	73.0	ESSICならず	00.02
	No. 40	105	27.5	142		20	1200	502		1.24	1.10	0	20. 3	72.3		05.07
	No. 40	100	21.0 07 E	142		30 40 [%]	1000	510		1.3/	1.10		21	76.6		93.07 06.07
	No. 41	100	21.0 07 F	14/		40	1000	519		1.43	1.1/		22 01 F	/0.0	E 201 - 4 5 9	90.07
	NO. 42	100	21.0 07 E	152		40	1007	514		1.49	1.20	0	21.0	77.0	131.0	
	NO. 43	115	27.0	101		ئا دە%	1050	518		1.44	1.1/	0	21.5	11.3	97.2	
	NO. 44	105	32.1	158		5U ^{~~}	1256	594		1.34	1.42		21.5	//.8	104.5	
	NO. 45	120	27.5	150		25~	13/1	520	-	1.41	1.16		20	//.6		93.92
	No. 46	105	32.1	14/		40~	12/9	604		1.23	1.36	0	20	/5.3	E98にならず	94. /3
	No. 47	105	32.1	137	1	30‴	1301	615	—	1.12	1.31	0	21	75.3	E98にならず	89.06

表-20 配合および練混ぜ性状の結果

※高炉セメントB種

3) 締固め性状

i) α, βとE98 締固めエネルギーの関係

図-30, **図-31** に *α* および *β* と完全充填時の締固めエネルギーの関係を示す.また,これらの完全充填 できなかった場合の *α*, *β* についても併せて示す.

ー般的に充填率 98%に到達する,適切な締固めエネルギーは 100J/L 以下である. α は 1.4 以上であっても完全充填となる配合が認められた. しかしながら,写真-42 に示すように,セメント混合物表面はペースト量が多く,分離ぎみの状態であった. このことから, α の適切な範囲としては 1.0~1.4 と考えられる. 一方, β は 1.1~1.7 の範囲で完全充填できたが, 1.3 以下を下回ると,写真-42 と同様にペースト量が多く分離ぎみ状態であった. このことから, β の適切な範囲としては 1.3~1.7 であると考えられる.

ここで、 α 、 β の値が適切な範囲であっても、配合によっては完全充填とならないものもあった. **写 真-43** には、 α 、 β の値が適切な範囲にあり、締固めエネルギーが 100J/L 以下の配合と完全充填とな らない配合の締固め性試験終了後のセメント混合物の状況を示した. 混合物表面の性状は明らかに異な り、 α 、 β の値のみで適切な配合と判断することは難しいと考えられる. また、これら2つの配合の明 らかな違いとしては、コンクリートがれき全質量に対する粒径5mm 以下のコンクリートがれきの質量 比率(S/A)であり、加振締固めによるセメント混合物の充填率に影響を及ぼす要因として示唆された.

なお,コンクリートがれきの含水率は,通常のコンクリート用骨材よりも高くなるが,コンクリート 用骨材を用いるときと同様に表面水率を補正することにより,加振締固め性に優れるセメント混合物が 得られることも確かめられた.

図-30 αの値と完全充填時の締固めエネルギーの関係

α:1.58, β:1.18 スランプ0.5cm

 $\alpha : 1.56, β : 1.32$ スランプ 0.5cm

写真-42 αが1.5以上の配合のセメント混合物締固め性状

S/A=32. 4% α : 1. 12, β : 1. 62 E98 : 70. 7 J/L

S/A=35.6% α:1.11, β:1.52 E98:到達せず

S/A=32. 4% α : 1. 22, β : 1. 68 E98 : 22. 4 J/L

S/A=36.7% α:1.20, β:1.65 E98:到達せず

写真-43 α, βの値が適切な範囲にある場合の締固め性試験後の硬化体の状況

ii) S/A の影響

S/Aに応じて適切な単位ペースト量を選定するために、ここでは、締固め性試験3分後の充填率で評価を行った.これは、締固め性試験による完全充填とならない場合でも、振動エネルギーを3分程度与えると収束すると考えられたためである.

図-32 に締固め性試験 3 分後の充填率と単位ペースト量の関係を示す.また併せて,写真-44 には, S/A=36.7%での加振締固め性試験終了後のセメント混合物の性状を示す.S/A の如何に拘らず,単位ペ ースト量が多くなるにしたがって,充填率は高くなる傾向を示し,S/A によって完全充填できる単位ペ ースト量は異なることが確かめられた.これは,S/A ごとにがれきの間隙を充填するのに必要な単位ペ ースト量があることを意味している.なおこのことから,粒径 5mm 以下の細粒分量が少ない場合には, 津波堆積物を多く加えることも可能と考えられる.

図-32 締固め性試験3分後の充填率と細骨材質量率

 S/A=36.7%
 S/A=36.7%

 単位ペースト量:284kg/m³
 単位ペースト量:300kg/m³
 単位ペースト量:315kg/m³

 写真-44
 締固め性試験後のセメント混合物の性状(S/A=36.7%)

iii) 混和剤の影響

表-21 に AE 減水剤を使用した配合とプレーン配合の練上がり性状および締固め性状を示す.また, 写真-45 に加振締固め性試験終了後のセメント硬化体を示す. 混和剤として用いた AE 減水剤は BASF ジャパン(株) 製のポゾリス No.8 である.

AE 減水剤を使用した配合の E98 締固めエネルギーは小さくなる結果を示した.また,練上がりの混合物の性状や初期充填率も良好であった.

練上がりから約 30 分後に再度締固め性試験を行ったところ,完全充填時の締固めエネルギーに変化 は認められないことから,夏季など外気温が上昇する状況になった場合は,AE 減水剤等の混和剤も適 用できることが確かめられた.

	スランプ	測定時期	初期 充填率 (%)	E98締固め エネルギー (J/L)					
<u> </u>	Ocm	練上がり時	82.8	25. 9					
	UCIII	経時27分後	79. 4	16. 2					
涅和刘佶田嗣会	Ocm	練上がり時	87. 2	5.0					
此和前使用配合	UGIII	経時34分後	85. 1	9.6					

表-21 AE 減水剤を使用した配合とプレーン配合の練上がり性状および締固め性状

 AE 減水剤を使用しない
 AE 減水剤使用配合

 プレーン配合
 万

 写真-45
 締固め性試験終了後のセメント混合物の状況

4) 小型ミキサによる練混ぜ試験のまとめ

コンクリートがれきをセメント,水と混合したセメント混合物の練混ぜ性状および締固め性状を明ら かにすることを目的として,小型ミキサで練混ぜ試験を実施した.以下に得られた結果を示す.

・津波堆積物を含むコンクリートがれきを用いた場合でも、完全充填できるスランプ 0cm の超硬練り配合のセメント混合物を製造できることが確かめられた.なお、コンクリートがれきの含水率は、通常のコンクリート用骨材よりも高いが、コンクリート用骨材を用いるときと同様に表面水率を補正することにより、加振締固め性に優れるセメント混合物が得られる.

・完全充填が得られる適切な α (粒径 5mm 以下の細骨材相当のがれきの実積率から求まる間隙体積と, それを充填するセメントペースト体積の比率), β (粒径 5mm を超える粗骨材相当のがれきの実積率か ら求まる間隙の体積と,それを充填するモルタル体積の比率)の値は,それぞれ 1.0~1.4, 1.3~1.7 で あることが確かめられた.ただし, α および β の値が適切な範囲にあるにも拘らず,完全充填できない 配合も認められ,これは S/A の影響があると考えられた.

・コンクリートがれきの全質量に対する粒径 5mm 以下のがれき量の比率(S/A)と締固めエネルギー との関係において、S/A の如何に拘らず、単位ペースト量が多くなるにしたがって、締固め性試験 3 分 後の充填率が大きくなる傾向を示した.また、S/A に応じて適切な単位ペースト量は異なり、コンクリ ートがれきの S/A の実測データを基に、単位ペースト量を定めることが可能であることが分かった.ま た、このことから、粒径 5mm 以下の細粒分量が少ない場合には、津波堆積物を多く加えることも可能 と考えられる.

・混和剤を使用した場合,完全充填時の締固めエネルギーは小さくなる結果を示し,練上がりの混合物の性状も適切であった.また,練上がり 30 分後の混合物の性状も良好であり,夏季など外気温が上昇した状況になった場合,混和剤の使用も有効であることが確かめられた.

(3) 強度試験結果

1) 圧縮強度

i) 圧縮強度試験の概要

表-22に材齢7日,28日における密度および圧縮強度を示す.試験に用いた供試体は、φ150×300mmの円柱供試体であり,試料を40mmのふるいでウェットスクリーニングを行った後に打ち込んだ.供試体の養生方法は、材齢7日までは封緘養生とし、その後水中養生とした.また、供試体端面を石膏にてキャッピングを行ってから試験に供した.なお、ポリプロピレン繊維をセメント硬化体容積の1%混入した配合(No.36)と、単位セメント量を低減した配合とした配合(No.37)は完全充填できなかった配合で、これ以外は完全充填できた配合である.

コンクリートがれきを用いた硬化体は,混入物(例えば,プラスチック,木くず等)が弱部となって 破壊することが懸念されたが,**写真-46**のコンクリートがれき圧縮試験供試体の載荷後断面に示すよう に,混入物の影響はなく,通常のコンクリートと同様の破壊形状であった.

					材齡	7日		材齡28日		
配合番号	骨材種類	水結合材比 (%)	S/A (%)	単位水量 (kg/m ³)	見掛けの 密度 (g/cm ³)	圧縮強度 (N/mm ²)	真密度 (g/cm ³)	見掛けの 密度 (g/cm ³)	圧縮強度 (N/mm ²)	備考
No. 12	C50	100	27.8	135	2. 18	5.26	_	2.19	11.8	
No. 13	C50	90	27.8	135	2.18	6.34	-	2.20	13.3	
No. 14	C50	80	27.8	135	2.18	8. 21	_	2.21	16.5	
No. 16	B50	100	26.4	135	2.05	4.36		2.07	9.87	
No. 17	A50	100	30.0	135	2. 22	4.90	-	2.25	9.91	
No. 18	A50	100	40.0	135	2.19	3.87	_	2.21	9.05	
No. 19	C50	60	50.0	180	2.12	12.1	-	2.15	22.1	-
No. 20	C50	100	27.8	125	2.19	5.10	_	2.21	11.5	
No. 21	C50	100	24.0	125	2.15	4.62		2.21	10.8	
No. 22	C50	100	30.0	125	2.17	4.03	_	2.20	11.1	
No. 29	C50	110	36.7	165			2.17	2.14	11.0	
No. 33	C50	100	36.7	158			2.18	2.12	11.7	
No. 35	C50	105	35.8	158	測定	測定なし		2.14	12.2	
No. 36	C50	105	35.8	158			2.12	1.98	7.62	PP繊維の購入
No. 37	C50	105	35.8	105			2.12	1.85	2.50	貧配合

表-22 材齢7日,28日における供試体の密度および圧縮強度

写真-46 コンクリートがれき圧縮試験供試体の載荷後断面

ii)水セメント比の影響

図-33 および図-34 にコンクリートがれきを使用したセメント硬化体の圧縮強度と水セメント比,セ メント水比の関係を示す.なお,図は,完全充填できた配合について取りまとめたものである.

材齢 7 日,28 日のいずれも,水結合材比が大きくなるにしたがって,圧縮強度は小さくなる傾向が 認められ,コンクリートがれきを用いた場合でも,通常のコンクリートと同様にセメント水比説が適用 できるものと考えられる.また,同一水セメント比による圧縮強度のばらつきは,水セメント比が大き くなるにつれ,若干大きくなる傾向であった.

図-34 材齢7日および28日におけるセメント水比と圧縮強度の関係

iii) 充填率の影響

図-35 に水セメント比は 105%で充填率の異なる場合の圧縮強度の測定結果を示す. ここで示してい るのは、完全充填できたセメント硬化体(充填率 98.6%)と、ポリプロピレン繊維を硬化体容積の 1% 混入したセメント硬化体(充填率 94.7%)、および粉体量を低減した配合としたセメント硬化体(充填 率 89.1%)である. 充填率が下がると圧縮強度や密度は低くなることが分かり、セメント硬化体表面に は写真-47 に示すように空隙や空洞が認められた. また、完全充填できない配合の圧縮強度はセメント 水比説が適用できないことも確かめられた.

図-36 には、供試体の見掛けの密度と材齢 28 日の圧縮強度の関係を示した.図は完全充填できたセメント硬化体の結果を取りまとめたものである.これより、見掛けの密度と圧縮強度の関係に明確な傾向は認められないが、供試体の見掛けの密度が 2.0g/cm³以上であれば、圧縮強度は約 10N/mm²以上を確保していることが確かめられた.

図-35 水セメント比 105%供試体の圧縮強度

写真-47 PP 繊維混入供試体の外観

iv)コンクリートがれき種類の影響

図-37 にコンクリートがれきの種類と圧縮強度の関係を示す.この結果は、水セメント比 100%における単位水量 135kg/m³ (No.12, No.16, No.17)の結果について取りまとめたものである. 材齢 7 日,材齢 28 日のいずれも、C50(津波堆積物を含むコンクリートがれき)においては、圧縮強度が他の A50, B50 よりも 2N/mm²程度大きくなる結果となった.これは、特に充填性の指標である α が異なっており、コンクリートがれき A50 で 1.52, B50 で 1.56 と適切と考えられる範囲よりも大きく、 **写真-48** に示すように、単位ペースト量が過多であったことが影響している可能性があると考えられる. その一方で、C50 は、αが 1.25 と適切な範囲内にあったことで圧縮強度が高かったと考えられる.

コンクリートがれきの種類 図-37 コンクリートがれきの種類と圧縮強度の関係

コンクリートがれき A50 コンクリートがれき B50 コンクリートがれき C50 α:1.52, β:1.44 α:1.56, β:1.32 α:1.25, β:1.36 写真-48 コンクリートがれき供試体の締固め性状(図 8.1.3-4 と対応)

2) 曲げ強度

曲げ強度は水セメント比 105%の充填性を確保した配合の供試体とその配合にポリプロピレン繊維を セメント硬化体容積の 1%を混入した供試体について検討した. なお,供試体は材齢 7 日までは封緘養 生,材齢 7 日から材齢 28 日までは水中養生とし,材齢 28 日時点で試験に供した. また,曲げ強度試験 用供試体は□150×150×530mm の角柱供試体である.

図-38 に材齢 28 日の曲げ強度を示す.ポリプロピレン繊維を混入した場合,曲げ強度はかえって小さ くなる結果を示した.この要因としては2つのことが挙げられる.まず,表-22 に示すように,ポリプ ロピレン繊維を用いたセメント硬化体の見掛けの密度が明らかに小さいこと,次に,繊維の長さが 48mm であり,ウェットスクリーニング後のコンクリートがれきの最大寸法(40mm)と同等であった ことが考えられる.また,完全充填できたセメント硬化体において,供試体1体のみ曲げ強度が大きく なり,特異なデータと判断した.これは,写真-49 に示すように,試験時の硬化体の引張側に木片が混 入されていたためである.このように,今回の実験では木片が供試体長辺方向に混入されていたが,短 辺方向に混入された場合には,その部分が弱部となり曲げ強度が低下する可能性があることも考えられ た.

PP繊維1%vol混入

図-38 材齢28日の曲げ強度

写真-49 特異点と判断したセメント硬化体の曲げ試験後の断面

写真-50 および**写真-51** に完全充填供試体と、ポリプロピレン繊維 1vol%混入供試体の曲げ試験後の 破断面の状況を示す.ポリプロピレン繊維はダマになっておらず、一様に分散しているような状況であった.

写真-50 セメント硬化体(C=150kg/m³)の曲げ試験後の破断面

写真-51 PP 繊維 1vol%混入(C=150kg/m³)の曲げ試験後の破断面

3) 強度試験のまとめ

コンクリートがれきを用いたセメント硬化体の強度特性を明らかにすることを目的として,圧縮強度 試験および曲げ強度試験を実施した.以下に得られた結果を示す.

・コンクリートがれきを用いたセメント硬化体の破壊状況としては、混入物が弱部となって破壊することはなく、通常のコンクリートと同様の破壊形状である.

・充填性を確保できる配合では、水結合材比が大きくなるにしたがって、圧縮強度は低くなる傾向が認められることから、通常のコンクリートと同様にセメント水説が適用できると考えられる.

・単位セメント量を低減させた配合の場合では、完全充填のセメント硬化体より圧縮強度が低くなり、 セメント水説は適用できない.このような完全充填できない配合の供試体製作は、テーブル加振による 締固めエネルギーを与えるのは適切ではなく、タンパなどの衝撃エネルギーを与えることで充填率を高 める必要があると考えられた.

・今回の実験では、セメント硬化体にポリプロピレン繊維を混入した場合において、曲げ強度は 2.61N/mm²と舗装コンクリートに必要な 4.5N/mm²を下回る結果であった.これは、繊維混入により 充填率が小さくなったことや、実験に用いたポリプロピレン繊維の長さが、供試体製作におけるウエッ トスクリーニング後のコンクリートがれきの最大寸法と同等程度であったことが要因であると考えら れた.

(4) コンクリートがれきの物性確認実験のまとめ

コンクリートがれきの材料特性,コンクリートがれきを用いたセメント混合物の練混ぜ性状,および セメント硬化体の強度特性を明らかにする目的で室内において実験的検討を行った.以下に得られた結 論を示す.

i)材料特性

・コンクリートがれき破砕後の粒度は、破砕機の刃間隔を 50mm と小さくすることで、いずれの種類 のがれきも砂防ソイルセメントガイドラインにある既往実績の範囲内に入った.また、画像解析技術を 用いて推定した粒度分布は、設定値の±3%程度の範囲内に入ることが確かめられた.

・コンクリートがれきの物性値は、通常のコンクリート用骨材と異なり、微粒分を多く含んでいるため吸水率も大きい.したがって、練混ぜ時の含水率も高くなることが確かめられた.また、軽量ブロックを含むコンクリートがれきの密度・吸水率は他のものに比べて、密度は小さく、吸水率は大きくなり、軽量ブロックの混入が材料特性に影響を及ぼすことも確認された.

ii) 練混ぜ性状

・コンクリートがれきを用いて、完全充填(充填率 98%以上)できる超硬練り配合が選定できることが 確かめられた.このとき、完全充填できる合の α (粒径 5mm 以下の細骨材相当のがれきの実積率から 求まる間隙体積と、それを充填するセメントペースト体積の比率)、 β (粒径 5mm を超える粗骨材相当 のがれきの実積率から求まる間隙の体積と、それを充填するモルタル体積の比率)の値は、それぞれ 1.0 ~1.4、1.3~1.7 であった.ただし、 α および β の値がこの範囲にあるにも拘らず、完全充填できない 配合も見られた.これは、S/A が影響していると考えられた.

・コンクリートがれきの全質量に対する粒径 5mm 以下のがれきの質量率(S/A)の如何に拘らず、単 位ペースト量が多くなるにしたがって、充填率が高くなることが確認できた.また、S/A によって、完 全充填できるための単位ペースト量が存在することから、実測の S/A に基づいて、必要最小単位ペース ト量が定められると考えられた.

・練混ぜ試験時にスランプ試験,締固め性試験を実施し,表面に空隙が多く存在したり,表面に水の多い状況の場合は,単位ペースト量が適切でないと考えられるため,単位水量や単位セメント量の調整を行い,より適切な配合を選定する.

・混和剤を使用した場合,完全充填時の締固めエネルギーは小さくなり,練上がりの硬化体の性状も適切であったことから,夏季など外気温が上昇する場合には,混和剤の使用も可能であることが確かめられた.

iii) 強度特性

・完全充填できる配合では、通常のコンクリートと同様にセメント水比説が適用でき、要求される強度 レベルから水セメント比を選定することが可能である.

・単位セメント量を低減させた配合の場合など、完全充填できない配合では、完全充填のセメント硬化 体より圧縮強度が小さくなり、セメント水比説が適用できない.したがって、このような完全充填でき ない配合では、テーブル加振による締固めエネルギーで適切に評価できないため、タンパなどの衝撃エ ネルギーを与えることで充填率を高めて評価する必要があると考えられる.

7.3.2. 実施工を模擬した実験の結果

(1) 実機ミキサによる練混ぜ試験結果

1) 実機実験概要

i) 試験ヤード整地

写真-52,写真-53 に整地前後の試験ヤードの状況を示す. 試験ヤードの地盤は砂質地盤であったため, コンクリートがれきと津波堆積物を敷き均し,転圧を行って試験ヤードとした. また,図-39 に試験ヤ ードの割付けを示す. 試験は4ケース行うこととしたため,試験ヤードを4つの区画に区切って設定した.

写真-52 試験ヤード整地前

写真-53 試験ヤード整地後

図-39 試験ヤード割付図
ii) 実機実験の手順

図-40 に実施工を模擬した実験の実施手順を,図-41 に施工断面を示す.また,写真-54~写真 8.2.1-14 に手順ごとの施工状況を示す.

ミキサキャリブレーションは、材料ごとにミキサからの排出速度と排出量の関係を得て行った. コン クリートがれきは 1m³バケットで計りとって、セメントは 20kg を、水は 100L をそれぞれミキサから 排出させてキャリブレーションを行った. その後、実機ミキサによる練混ぜ、4t ダンプトラックによる 撒出し、3t 級ブルドーザによる敷均し、および 3t 級振動ローラーによる転圧を行った. また、転圧時 には沈下量計測を、転圧完了時には RI 測定法(放射線測定法)による現地密度の推定を行った.

図-40 施工手順フロー図

<u>ラー転圧</u>			
	2リフト 4層目	150	
ローラー転圧	2リフト 3層目	150	
	1リフト 2層目	150	
	1リフト 1層目	150	

図-41 層厚断面図

写真-54 ミキサ全景

写真-55 キャリブレーション状況 (母材)

写真-56 キャリブレーション状況(セメント)

写真-57 キャリブレーション状況(水)

写真-58 材料投入(骨材)

写真-59 材料投入(セメント)

写真-60 混合機内部 2軸パドルミキサ

写真-61 排出状況

写真-62 ダンプアップ後セメント混合物

写真-63 ブルドーザ敷均し状況

写真-64 振動ローラー転圧状況

写真-65 RI 密度試験計測状況

iii)転圧方法

図-42,図-43 に実機実験供試体の断面図および縦断図を示す.図-42 に示すように、振動ローラーの 軌跡は中央部で 380mm 程度ラップさせ、法肩より 500mm 程度の離隔を確保した.また、振動ローラ ーの走行速度は 1km/h を標準とした.さらに、図-43 に示すように、振動ローラーの退避場所、振動の 切り替え場所は予め定め、指定した場所以外で停車しないようにした.コア採取や RI 試験などは、振 動ローラーが重複した箇所や退避場所を避けて行った.

図-42 断面図

図-43 縦断図

iv)試験ケース

表-23に試験ケースを示す. 試験ケースは, 配合を2種類とし, 転圧回数を合計8回, 10回の2種類の合計4ケースとした.

Case	T 7		転圧回数(回)	
No.	配 合	無振動	有振動	合計
1	配合2	2	6	8
2	単位セメント里 100kg/m ³	2	8	10
3	配合1	2	6	8
4	甲位セメント重 150kg/m ³	2	8	10

表-23 試験ケース

v)試験項目

表-24 に実機実験における測定項目を示す.

測定時期	評価項目	測定方法	測定頻度
盆油玉品	スランプ試験	JIS A 1101	1回/1リフト
淋ルビロ	締固め性試験	JSCE-F 508	1回/1リフト
転圧時	沈下量	レベル測量	1回(6点)/往 復
	現地密度試験(RI)	ガンマ線透過型	3ヵ所×4回/Case
	コア密度	供試体寸法,供試体重量の計測	全供試体
硬化時	コア圧縮強度	・(<i>φ</i> 150×300, <i>φ</i> 250×500) 材齢 31 日に圧縮強度試験を実施	3本/Case を基本とする
	圧縮強度	 ・振動締固めによる供試体(φ150×300) 材齢 31 日に圧縮強度試験を実施 	3本/配合

表-24 実機実験における試験項目

2) 練混ぜ性状・締固め性状

表-25 に実機実験に用いた完全充填配合(以下,配合①と称す)および単位セメント量を低減させた 配合(以下,配合②と称す)の練混ぜ性状,締固め性状の結果を示す.なお,表には,同配合を小型ミ キサにて行った室内練混ぜ試験の結果も併せて示した.

完全充填の配合,および単位セメント量を低減させた完全充填できない配合のいずれも,小型ミキサ による室内練混ぜ試験結果と同様にスランプは0cm であった.しかし,転圧実験で使用した単位セメン ト量 150kg/m³の場合においては,写真-66 に示すように,スランプが同じ0cm であっても練混ぜ性状 は異なり,やや水の足りない状態であった.これは,コンクリートがれきの含水状態が影響したと思わ れ,実際の施工時には,RI 法などでコンクリートがれきの含水率を連続的にモニタリングし,その含水 状態に応じた表面水の補正を行う必要があると考えられる.

		T	<u>z-70</u>	凹口间	もちちい	ノ 休 加	ビ注扒	,市市區	可めつ王	れの和	i禾			
				単位量 (kg/m ³)					練混	ぜ性状		締固め性状		
	配合内容	W/C	S/A		高炉 水 セメント	コンクリ・	ートがれき	a	в	7 = 1.7	硬化体	'nᄈᄎᄨᇴ	締固め	E98に到達し
		(%)	(%)	水		5mmJ	5mm以下	u	β	(cm)	温度 (%)	初朔尤堤平 (%)	エネルギー	加振3分時の
				B種	5mm以上	がれき				(0)		(J/L)	充填率	
EL A	小型ミキサによる 室内練混ぜ試験結果	105	35. 8	158	150	1169	678	1. 17	1.64	0	19	82	33	_
	大型ミキサによる 転圧試験時の練混ぜ結果	105	35. 1	158	150	1200	648	1. 23	1.56	0	21	75. 1	98%以上に 到達せず	97.19
副合③	小型ミキサによる 室内練混ぜ試験結果	105	35. 8	105	100	1292	720	0. 74	1.33	0	20	72. 6	98%以上に 到達せず	81. 12
	大型ミキサによる 転圧試験時の練混ぜ結果	105	35.6	105	100	1295	716	0. 74	1. 33	0	21	72. 2	98%以上に 到達せず	78. 75

表-25 配合および練混ぜ性状, 締固め性状の結果

小型ミキサによる室内練混ぜ 試験時の性状 E98 : 33J/L

大型ミキサによる転圧実験時の性状 充填率 98%に到達せず 締固め性試験3分後の充填率:97.19% 水セメント比:105%, 単位セメント量:150kg/m³

小型ミキサによる室内練混ぜ 試験時の性状:充填率98%に到達せず 締固め性試験3分後の充填率:81.12%

大型ミキサによる転圧実験時の性状 充填率 98% に 到達せず 締固め性試験3分後の充填率:78.75%

水セメント比:105%,単位セメント量:100kg/m³

写真-66 加振締固め性状(締固め性試験後)

(2) 転圧実験結果

1) 沈下量

図-44 に沈下量の計測位置を示す.転圧開始前から振動ローラーによる転圧1往復ごとにレベルを測量し,沈下量の変化を把握した.計測位置は転圧直前にマーキングし,毎回同一の位置となるようにした.

表-26 に沈下量の平均値を、図-45、図-46 に1リフト、2リフトそれぞれの沈下量を示す.1リフトの Case3、2リフトの Case1 が、他の Case と比較して沈下量が大きい.これは、試験ヤードの現地盤が砂質地盤であった影響を受けたと思われる.また、1リフトより2リフトの沈下量が比較的安定しているのは、1リフトが砂質地盤の影響を受けたためと思われる.

2リフト Case4 の転圧 8回と10回の沈下量を比較すると、転圧 8回で沈下はほぼ収束しているが、 Case2 では10回目でも沈下が収束していない.これは、配合2(単位セメント量100kg/m³)の練上が り時の間隙が多いため、今回使用した振動ローラーの能力では、収束までさらに転圧が必要であったと 考えられる.一方、配合1(単位セメント量150kg/m³)のように完全充填できる配合では、転圧回数8 回で沈下量が収束したものと考えられる.

図-44 沈下量測定位置平面図

リフト	Case No.	配合 (単位セメント 量)	初期	2 回	4 回	6 回	8回	10 回
	1	配合 2	0	0	6	8	11	-
1 11	2 (100kg/m ³)	0	1	4	4	5	6	
	3	配合1	0	5	10	14	17	-
	4	$(150 kg/m^3)$	0	4	4	6	8	9
	1	配合 2	0	7	14	19	22	-
2リフト -	2	(100kg/m^3)	0	4	8	11	14	15
	3	配合1	0	2	7	10	11	-
	4	(150kg/m^3)	0	3	6	9	11	11

表-26 沈下量の平均値

単位:mm

2) 現地密度試験(RI密度試験)

図-47 に現地密度の計測位置を示す.現地密度は RI(放射線)測定装置により,測定1カ所につき試験機を 90°ごとに回転して4回行った.また,1ケースにつき3カ所で測定した.

表-27 に RI 推定密度と配合密度の比較を示す.配合が同じ Case1 と Case2, Case3 と Case4 の RI 推定密度を比較すると、それぞれ同程度であることから、転圧回数 8 回と 10 回の違いが密度に及ぼす影響は小さいことがわかる.また、RI 推定密度と配合密度の比は、配合 2 (単位セメント量 100kg/m³) の 0.92、0.91 に対し、配合 1 (単位セメント量 150kg/m³)では 1.01、1.01 と 1.0 に達しており、配合 上の密度が現地密度でも得られた.これは前述のとおり、今回使用した振動ローラーの能力では、配合 2 では締固めが不十分であったのに対し、配合 1 では十分な締固めが行えたためと考えられる.

図-47 現地密度計測位置 平面図

Case No.	配合 (単位セメント量)	RI 推定密度 (t /m ³)	配合密度 (t /m ³)	RI/配合比
Case1	配合 2	2.041	9.916	0.92
Case2	(100kg/m^3)	2.017	2.210	0.91
Case3	配合 1	2.167	0.150	1.01
Case4	$(150 kg/m^3)$	2.170	2.156	1.01

表-27 RI 推定密度と配合密度の比較

(3) コア強度試験

1) コア採取

写真-67 にコアの採取状況を,図-48 にコア採取位置を示す.コア採取は,実機実験後の材齢 21~24 日で行った.

表-28, 表-29 に採取したコアの長さ, 直径, および JIS A 1107「コンクリートからのコア採取方法 及び圧縮強度試験方法」に示されている圧縮強度の補正係数を示す.また, 写真-68~写真-73 に採取し たコアのうち代表的なものを, 写真-74, 写真-75 に実機試験時に採取した加振締固め供試体の外観を示 す.単位セメント量が 100kg/m³と少ない配合 2 のコアは,途中で折れるなどして圧縮強度試験に必要 な長さを得られないものがあった.また,コアの表面には木くずなどが観察された.

写真-67 コア採取状況

Case 3	1 0 0 2	C	ase42 1°2	1 °3	
° 3					
Case1	5° () 2		Case 2		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	°6 0 ₃		2 1 ° 3 1 ° 2	4 ⁵ ° 3	

凡例 ○:*ф* 250 ○:*ф* 150

図-48 コア採取位置 平面図

	高 (m:	さ m)	直径	高さ	JISA 1107 補正 係数	
武駛伴名	カット前	カット後	(mm) d	直径比 h'/d		
	h	h'				
C1-1	350	304.1	150.0	2.03	1.00	
C1-2	290	278.8	149.9	1.86	0.99	
C1-3	190	175.9	149.9	1.17	0.91	
C 1-4A	100	-	-	-	-	
C1-4B	120	-	-	-	-	
C 1-5	50	-	-	-	-	
C1-6A	150	163.4	150.2	1.09	0.89	
С1-6В	250	201.9	149.9	1.35	0.94	
C 2-1	50	-	-	-	-	
C 2-2A	100	-	-	-	-	
C 2-2B	120	-	-	-	-	
C 2-2C	150	-	-	-	-	
C 2-3	440	300.7	149.9	2.01	1.00	
C 2-4	330	302.9	149.9	2.02	1.00	
C 2-5	300	249.1	149.9	1.66	0.97	
C 3-1A	380	299.9	149.6	2.00	1.00	
C 3-1B	180	164.6	149.6	1.10	0.89	
C 3-2A	380	302.1	149.9	2.02	1.00	
C 3-2B	200	171.9	149.8	1.15	0.91	
C 3-3A	290	299.7	149.8	2.00	1.00	
C 3-3B	260	249	149.8	1.66	0.97	
C4-1A	270	247.9	149.9	1.65	0.97	
C4-1B	320	300.8	149.8	2.01	1.00	
C 4-2	300	300.8	149.9	2.01	1.00	
C4-3A	150	159	149.9	1.06	0.88	
C4-3B	400	302.7	149.9	2.02	1.00	

表-28 φ150 コアの寸法と圧縮強度の補正係数

討驗休夕	(高さ mm)	直径 (mm)	高さ	JISA 1107 補正	
的大学生	かめいの カット前 カット後 h h' (mm)		d	直注比 h'/d	係数	
C 1-1	170	-	-	-	-	
C1-2A	240	268.8	244.5	1.10	0.89	
С1-2В	320	299.0	245.3	1.22	0.92	
C 2-1A	100	-	-	-	-	
C 2-1B	300	265.9	246.2	1.08	0.89	
C 2-2	130	-	-	-	-	
C 2-3	320	300.3	245.6	1.22	0.92	
C 3-1	300	260.8	246.8	1.06	0.88	
C 3-2A	300	259.4	247.5	1.05	0.88	
С 3-2 В	270	279.3	246.1	1.13	0.90	
C4-1A	250	277.5	247	1.12	0.90	
C4-1B	250	267.1	247.1	1.08	0.89	
C4-2A	300	292.0	247.7	1.18	0.91	

表-29 *ϕ*250 コアの大きさと圧縮強度の補正係数

写真-70 C2-3 全景

写真-69 C1-1 拡大

写真-71 C2-3 拡大

写真-73 C3-1拡大

写真-74 C4-1 全景

写真-75 C4-1 拡大

写真-76 Case1,2 配合2振動締固め供試体

写真-77 Case3,4 配合1振動締固め供試体

2) コア圧縮強度

採取したコアは端部をカットし,両端を石膏でキャッピングして,材齢31日で圧縮強度を測定した. コアの長さが直径の2倍に満たない試験体はJISA1107「コンクリートからのコア採取方法及び圧縮強 度試験方法」にしたがって圧縮強度の測定値を補正した.

表-30,表-31,および図-49 にコアと加振締固め供試体の圧縮強度を示す.図-49 には、供試体の高 さの影響を補正した後の圧縮強度の平均値と、その範囲を示している.ただし、表-31 内の赤色網掛け、 図-49 中の×印で示した測定データは、他の供試体より著しく強度が大きく出たため、平均値の算定か らは除外した.

コアの直径が 150 mm と 250mm の供試体を比較すると, 圧縮強度は直径 250mm に比べ, 直径 150mm の方がやや小さくなる傾向が見られる. このことから, 最大骨材寸法の3倍以上の直径(本実験では240mm 以上)で圧縮強度を測定することを正とすれば, 直径 150mm のコアで圧縮強度を測定 した場合は, やや安全側の評価になると考えられる.

次に,転圧回数とコア圧縮強度の関係を比較すると,配合2(単位セメント量100kg/m³)の直径250mm のコアの結果によれば,転圧回数10回のCase2(圧縮強度5.3N/mm²)に比べ,転圧回数8回のCase1 (圧縮強度3.6N/mm²)での圧縮強度が低い.このことから,完全充填できない配合2では,転圧によ る締固めの効果が転圧回数8回では不十分で,10回でも不十分であった可能性が考えられる.一方, 配合1(単位セメント量150kg/m³)の直径250mmのコアの結果によれば,転圧回数10回のCase4(圧 縮強度8.3N/mm²)と,転圧回数8回のCase3(圧縮強度8.4N/mm²)の圧縮強度は同じである.この ことから,完全充填できる配合1では,転圧回数8回で十分な締固め効果が得られたと思われる.

さらに、コア供試体と加振締固め供試体の圧縮強度を比較すると、配合2(単位セメント量100kg/m³) の Case2(転圧回数 10 回)では、コア直径 250mm で 5.3N/mm²、コア直径 150mm で 4.1N/mm²に 対し、加振締固め供試体では 2.3N/mm²と低く、完全充填できない配合では、転圧締固めと加振締固め の締固め効果の違いが見られた.一方、配合1(単位セメント量 150kg/m³)の Case4(転圧回数 10 回) では、コア直径 250mm で 8.3N/mm²、コア直径 150mm で 6.8N/mm²に対し、加振締固め供試体では 8.1N/mm² とほぼ同程度であり、完全充填できる配合では、転圧締固めによっても、加振締固めと同程 度の締固め効果が得られたと思われる.

	F1			, , ,		
供試体 <i>コア</i>	配合	供試体直径 (mm)	供試体高さ (mm)	圧縮強度 (高さ補正 後) (N/mm ²)	平均圧縮強度 (高さ補正後) (N/mm ²)	
加振締固め 供試体	帝固め 式体 se1	150	300.0 298.0	2.2 2.5	2.3	
			299.0	2.1		
		150	278.8	3.7		
Case1			175.9	5.1	4.2	
コア	配合2		163.4	4.8		
	単位セメント重		201.9	4.2		
	100kg/m ³	250	268.8	3.7	3.6	
			299.0	3.6	0.0	
			300.7	4.1		
Case2 コア		150	302.9	5.3	4.1	
			249.1	2.9		
		250	265.9	6.1	5.3	
		200	300.3	4.5		

表-30 コアおよび室内試験圧縮強度(Case1,2)

表-31 コアおよび室内試験圧縮強度(Case3,4)

供試体 コア	配合	供試体直 径 (mm)	供試体高さ (mm)	圧縮強度 (高さ補正後) (N/mm ²)	平均圧縮強度 (高さ補正 後) (N/mm ²)	
加垢締田め			302.0	8.4		
加派柿固め		150	303.0	7.3	8.1	
医时体			301.0	8.6]	
			299.9	6.7		
		150	164.6	9.5		
			302.1	6.1	7.8	
Casa?	配合1		171.9	13.9		
しases コア			299.7	8.4		
			249.0	8.1		
	単位セメント		260.8	6.6	8.4	
	量	250	259.4	8.4		
	$150 \mathrm{kg/m^3}$		279.3	10.1		
			247.9	5.7		
			300.8	12.0		
		150	300.8	6.9	6.8	
Case4 コア			159.0	6.9		
			302.7	7.9		
			277.5	9.4		
		250	267.1	12.8	8.3	
			292.0	7.3		

図-49 コアおよび室内試験圧縮強度

3) コア密度

表-32,表-33,図-50,図-51にコア密度と加振締固め密度の測定結果を示す.また,表-34に直径150mmのコア密度,加振締固め密度と配合密度の比率を示す.ここでは、コア供試体と加振締固め供試体について、質量と試験体寸法を計測して求めた見掛けの密度と、水中重量を計測して求めた真密度を記載している.なお、直径250mmのコア供試体では、水中重量を精度よく測定できなかったため、真密度は得られていない.

図-50,表-34によれば見掛けの密度について、単位セメント量 100kg/m³の完全充填できない配合 2 では、コア直径や転圧回数による違いは見られないが、締固め方法の違いによる影響は見られ、転圧コア密度に比べて、加振締固め供試体密度の方が小さくなることがわかった。一方、単位セメント量 150kg/m³の完全充填できる配合 1 では、コア直径や転圧回数、締固め方法の違いによる影響は見られず、加振締固め性試験によって転圧締固めの効果を評価できることがわかった。

図-51,表-34によれば真密度について,配合2と配合1の締固め充填性が異なるのにもかかわらず, それぞれの配合における転圧コア密度と加振締固め密度に違いは見られない.真密度は水中重量から算 出されるが,見掛けの密度が小さい配合2の加振締固め供試体のような場合では,供試体内部の間隙に 水が入った状態での重量が測定されるため,間隙を除外した実体積が得られ,これで質量を除すためで ある.このことから,転圧コア供試体の密度を評価する場合には,供試体質量をコア外寸法から求まる 体積で除した見掛けの密度で評価する方が,転圧締固めの効果を適切に評価できると考えられる.

					• • • , = /	
供試体 コア	配合	供試体 直径 (mm)	見掛けの 密度 (t/m ³)	見掛けの 密度平均 (t/m ³)	真密度 (t/m ³)	真密度 平均 (t/m ³)
加振締固め			1.782		2.114	
供試体		150	1.798	1.783	2.112	2.116
			1.770		2.120	
			2.062		2.085	
	配合 2 単位セメント		2.082		2.114	
Cara 1		150	2.115	2.086	2.144	2.114
Case 1			2.102		2.113	
			2.071		2.113	
	里 100kg/m3	250	2.020	2 006	-	_
	100kg/111*	250	1.993	2.000	-	_
			2.077		2.080	
Case 2		150	2.083	2.076	2.083	2.081
			2.067		2.081	
		250	2.059	2 072	-	_
		200	2.084	2.072	-	_

表-32 コア密度と加振締固め密度の測定結果(Case1, 2)

	1	1				
供試体 コア	配合	供試体 直径 (mm)	見掛けの 密度 (t/m ³)	見掛けの 密度平均 (t/m ³)	真密度 (t/m ³)	真密度 平均 (t/m ³)
加振締固め	配合 1 単位セメント量 150kg/m ³	150	2.134	2.137	2.193	2.194
			2.138		2.194	
供訊件			2.138		2.194	
			2.132	2.158	2.138	2.162
			2.160		2.164	
		150	2.151		2.141	
Case3		150	2.180		2.185	
			2.103		2.115	
			2.221		2.230	
		250	2.091	2.073	-	
			2.022		-	-
			2.108		-	
Case4 コア		150	2.163	2.168	2.162	2.170
			2.210		2.195	
			2.149		2.158	
			2.143		2.158	
			2.178		2.179	
		250	2.001	2.052	-	
			2.089		-	-
			2.066		-	

表-33 コア密度と加振締固め密度の測定結果(Case3,4)

コア密度/配合密度 加振締固め密度/配合密度 Case 配合 No. 見掛けの密 見掛けの密度 真密度 真密度 庋 配合2 Case1 0.941 0.954 単位セメント 0.8050.955Case2 0.937 0.939 量 100kg/m³ 配合 1 Case3 1.001 1.003 単位セメント 0.991 1.018 1.006 1.007 Case4 量 150kg/m³

表-34 直径150mmのコア密度,加振締固め密度と配合密度の比率

4) 密度と強度の相関

図-52,図-53にコアの見掛けの密度と圧縮強度の関係を示す.これらによると、密度が同じであって も、圧縮強度は同じでなく、今回測定したコアの見掛けの密度と圧縮強度には、明確な相関は見られな い.ただし、図-36で示したように、締固め後の充填率が98.6、94.7、89.1%と大きく異なる場合には、 見掛けの密度も2.14、1.98、1.85t/m³と異なり、圧縮強度もこれに応じて12.2、7.62、2.50N/mm²と 低下することが確かめられている.このことから、転圧締固めしたコアの見掛けの密度が大きく低下し た場合には、それに応じて圧縮強度も低くなると考えられる.

配合 2(単位セメント量 100kg/m³, Case1,2)では、見掛けの密度は 1.99~2.12t/m³の範囲にあり、 圧縮強度は 2.87~6.06N/mm²の範囲にあった.また、配合 1(単位セメント量 150kg/m³, Case3,4) では、見掛けの密度は 2.02~2.22t/m³の範囲にあり、圧縮強度は 5.68~13.9N/mm²の範囲にあった. このように、今回計測されたコアの見掛けの密度は 2.0t/m³より大きい範囲にあったため、それぞれの 配合における圧縮強度としては、極端に低いものが発生しなかったものと考えられる.そのため、圧縮 強度の最小値に対応した、見掛けの密度の最小値が考えられる.

このようなことから,実際の転圧締固めによる施工においてコアの見掛けの密度が大きく低下した場合,今回の実験結果に限れば 2.0t/m³ 程度を下回った場合には,圧縮強度もその最小値(配合 2 では 2.3N/mm²,配合 1 では 5.7N/mm²)より低下すると考えられる.そのため,施工時の品質管理において,必要な圧縮強度に対応する見掛けの密度の最小値を設定することで,セメント硬化体の品質を管理できると考えられる.なお,実際の施工においては,コアによる見掛けの密度の測定頻度は多くできないため,コアの見掛けの密度とよい相関がある RI 法による推定密度で管理することになる.

図-52 見掛けの密度と圧縮強度の関係(配合 2,単位セメント量 100kg/m³, Case1, 2)

図-53 見掛けの密度と圧縮強度の関係(配合1,単位セメント量150kg/m³, Case3, 4)

(4) 実施工を模擬した実験のまとめ

実施工を模擬した実機実験により得られた結果を以下にまとめる.

・津波堆積物を含む破砕したコンクリートがれきと、セメント・水を混合したセメント混合物を実機ミキサで製造できることが確認できた.また、セメント混合物の加振締固め充填性は、コンクリートがれきの含水率の変動の影響を受けることがわかった.

・本実験で用いた 3t 級振動ローラーで,完全充填できる配合のセメント混合物を転圧した場合,転圧 回数 8 回で沈下量はほぼ収束し,コアの密度,圧縮強度も加振締固め供試体と同程度の値が得られたこ とから,転圧締固めによっても,加振締固めによる完全充填と同じ締固めの効果が得られたと考えられる.このことから,実施工においては,沈下量の計測の代わりに転圧回数を管理することで品質の管理 が行える.

・本実験で用いた 3t 級振動ローラーで,完全充填できない配合のセメント混合物を転圧した場合,転 圧回数 8 回で沈下量は収束せず,10 回でも収束していない可能性が確かめられた.また,転圧締固め によるコアの密度,圧縮強度の方が,加振締固め供試体による値よりも高いことから,転圧締固めの方 が,加振締固めよりも締固めの効果が高く得られたと考えられる.このことから,完全充填できない配 合の締固め効果を評価するには加振締固めでは不十分であり,ダンパーなどを用いた衝撃締固めなどで 評価する必要があると考えられる.

・コアの圧縮強度は、コア直径 250mm の供試体に比べ、コア直径 150mm の供試体の方がやや小さく なる傾向が見られた.このことから、最大骨材寸法の3倍以上の直径(本実験では240mm 以上)で圧 縮強度を測定することを正とすれば、直径150mm のコアで圧縮強度を測定した場合は、やや安全側の 評価になることがわかった.

・RI 測定法による現地での推定密度は、コアの見かけの密度とほぼ一致することから、現地密度の管理 に有効な測定手法でることが確かめられた.また、密度を管理項目とする場合には、水中重量から求ま る真密度よりも、コア外寸法から求まる体積で除した見掛けの密度で評価する方が、転圧締固めの効果 を適切に評価できることがわかった.

・今回の実機実験で得られたコアの見掛けの密度と圧縮強度には、明確な相関は見られなかった.しか し、要素実験では、充填率と密度、および圧縮強度の間に相関性が見られたことから、転圧締固めした コアの見掛けの密度が大きく低下した場合には、それに応じて圧縮強度も低くなると考えられる.その ため、施工時の品質管理において、必要な圧縮強度に対応する見掛けの密度の最小値を設定することが、 セメント硬化体の品質管理に有効と考えられる.

7.3.3. 実験のまとめ

本章では、コンクリートがれきの材料特性、コンクリートがれきを用いたセメント混合物の練混ぜ性 状、およびセメント硬化体の強度特性を明らかにする目的で室内実験、および実機における大型ミキサ による練混ぜ試験および転圧試験を行った.以下に得られた結論を示す.

i)材料特性

- ふるい分けによる粒度分布は、図-54に示すように、移動式粉砕機の刃間隔が狭くなると細粒分が多くなる傾向が認められ、破砕機の刃間隔を50mmとしたものは、がれきの種類によらず、「砂防ソイルセメント活用ガイドライン」の既往実績の粒度範囲内にあることを確認した。
- ・破砕回数は、図-55の破砕回数と粒度分布の関係に示すように、破砕の費用と時間を考慮すると、1 回でよいと判断できた.
- ・画像解析処理によるコンクリートがれきの粒度分布の推定結果は、図-56 に示すように、実際のふるい分けによる粒度分布の概ね±3%の範囲内にあり、画像解析処理技術による粒度推定ができることが確かめられた。
- ・通常のコンクリート用細骨材および粗骨材と比較して、コンクリートがれきの表乾密度は小さく、吸水率は大きい結果であった.これは、図-57に示すように、粒径 5mm 以下に含まれる微粒分が 10~23%と多いことによると推察される.また、軽量ブロックを含むコンクリートがれきの密度・吸水率は、他のものに比べて密度は小さく、吸水率は大きい結果であり、軽量ブロックの混入が影響していると考えられた.
- ・コンクリートがれきに含有されている混入物として、本実験では、軽量ブロック、瓦、ガラス、プラスチック、木くず、鉄および紙類を確認したところ、多くがコンクリートを主体としており、他の材料の混入は少ないことが確かめられた.これは、コンクリートがれきが集積の時点で、ある程度分別されているためと考えられる.
- ・コンクリートがれき、およびコンクリートがれきを使用したセメント硬化体のいずれも、六価クロムやカドミウムなどの有害物質は環境基準を下回っており、今回実験で用いたコンクリートがれきに関しては、有害物質の溶出が周辺環境に及ぼす影響はないことが確かめられた。

図-56 画像解析により求めたコンクリートがれきの粒度分布

図-57 コンクリートがれきに含まれる微粒分量

ii)練混ぜ・締固め性状

・コンクリートがれきを用いた場合でも完全充填できるスランプ 0cm の超硬練り配合や粉体量を低減 させた配合のセメント硬化体を製造することができる.

・完全充填が得られる,適切な α (粒径 5mm 以下の細骨材相当のがれきの実積率から求まる間隙体積 と、それを充填するセメントペースト体積の比率)、 β (粒径 5mm を超える粗骨材相当のがれきの実積 率から求まる間隙の体積と、それを充填するモルタル体積の比率)の値は、図-58 に示すように、それ ぞれ 1.0~1.4、1.3~1.7 であることが確かめられた.ただし、 α および β の値が適切な範囲にあるにも 拘らず、完全充填できない配合も認められ、これは S/A の影響があると考えられた.

・コンクリートがれきの全質量に対する粒径 5mm 以下のがれき量の比率(S/A)と締固めエネルギーとの関係においては、図-59 に示すように、S/A の如何に拘らず、単位ペースト量が多くなるにしたがって、締固め性試験 3 分後の充填率が大きくなる傾向を示した.また、S/A に応じて適切な単位ペースト量は異なり、コンクリートがれきの S/A の実測データを基に、単位ペースト量を定めることが可能であることが分かった.

・スランプ試験後の性状や加振締固め性試験後の硬化体の表面の状況において、単位ペースト量が適切 でないと評価された場合には、単位ペースト量(単位水量、単位セメント量)の増減によって調整を行 う必要がある.

iii) 強度特性

・完全充填配合における室内加振締固め供試体,実機加振締固め供試体,およびコア供試体の圧縮強度 を図-60,表-35に示す.ここでは、コア径 φ 150 供試体の結果について取りまとめた.また、品質管理 に使用する室内および実機による加振締固め供試体は3体の平均を、実機のコア供試体は試験結果の最 小を示した.設計基準強度を実機コア強度に設定した場合、室内レベルでは2.15 倍の圧縮強度が発現 するような水セメント比を選定する必要があると考えられる.また、通常の品質管理である、実機レベ ルの加振締固め供試体では、設計基準強度の1.43 倍を確保する必要があると考えられた.

・完全充填配合供試体の見掛けの密度は、図-61 に示すように、練混ぜ方法や締固め方法の如何に拘らず、ほぼ同程度であることを確認した.

・完全充填できない配合における室内加振締固め供試体,実機加振締固め供試体,およびコア供試体の 圧縮強度,および見掛けの密度は、図-62、図-63に示すように、コア供試体が加振締固め供試体より若 干大きくなる結果を示した.これは、転圧によって硬化体の間隙を埋めていることが要因であると考え られる.したがって、単位セメント量を低減させた貧配合は、加振による供試体の製作方法は適当では なく、タンピングなどにより衝撃エネルギーを与えることが必要であると考えられる.

	室内	実機		
	加振締固め(φ150)	加振締固め(ϕ 150)	コア (φ150)	
圧縮強度(N/mm ²)	12. 23	8. 11	5.68	
コアに対する強度比	2. 15	1.43	-	

表-35	実機のコア強度に対す	「る室内および実機の加振締固め供試体の強度	÷۲
100		の主1100の0天成2700瓜川回27700円2753	. –

図-61 練混ぜ方法と締固め方法ごとの見掛けの密度の比較(完全充填配合)

図-62 練混ぜ方法と締固め方法ごとの圧縮強度の比較(完全充填できない配合)

図-63 練混ぜ方法と締固め方法ごとの見掛けの密度の比較(完全充填できない配合)

iv)実機における転圧試験結果

・津波堆積物を含む破砕したコンクリートがれきと、セメント・水を混合したセメント混合物を実機ミキサで製造できることが確認できた.また、セメント混合物の加振締固め充填性は、コンクリートがれきの含水率の変動の影響を受けることがわかった.

・コアの圧縮強度は、コア直径 250mm の供試体に比べ、コア直径 150mm の供試体の方がやや小さく なる傾向が見られた.このことから、最大骨材寸法の3倍以上の直径(本実験では240mm 以上)で圧 縮強度を測定することを正とすれば、直径150mm のコアで圧縮強度を測定した場合は、やや安全側の 評価になることがわかった.

・RI 測定法による現地での推定密度は、コアの見かけの密度とほぼ一致することから、現地密度の管理 に有効な測定手法でることが確かめられた.また、密度を管理項目とする場合には、水中重量から求ま る真密度よりも、コア外寸法から求まる体積で除した見掛けの密度で評価する方が、転圧締固めの効果 を適切に評価できることがわかった.

・今回の実機実験で得られたコアの見掛けの密度と圧縮強度には、明確な相関は見られなかった.しかし、要素実験では、充填率と密度、および圧縮強度の間に相関性が見られたことから、転圧締固めしたコアの見掛けの密度が大きく低下した場合には、それに応じて圧縮強度も低くなると考えられる.そのため、施工時の品質管理において、必要な圧縮強度に対応する見掛けの密度の最小値を設定することが、セメント硬化体の品質管理に有効と考えられる.

7.4. 構造物に適用するための品質管理手法の提案

7.4.1. 本技術開発の成果の実構造物への適用

「7.3.3 実験結果のまとめ」でも述べたとおり、加振締固め性が良好な完全充填が得られる配合の選 定方法を確立することができた、また、完全充填できる配合のセメント硬化体では、水セメント比に応 じた圧縮強度が得られることも確認できた.ただし、この場合のセメント硬化体の実機転圧によるコア 圧縮強度は、今回実験した水セメント比 105%で 5.7~12.0N/mm²であることから、6N/mm²程度を超 える圧縮強度が要求される材料として適用できる.一方,水セメント比をこれ以上大きくすることは, 材料分離しやすくなることから難しく、この管理方法でこれより低強度の配合を選定することは現実的 でないと考えられる.このようなことから,コンクリートがれきのセメント硬化体について,水セメン ト比に応じた圧縮強度が発現することを前提とした管理方法を適用する場合には、設計基準強度で 6N/mm²程度が圧縮強度範囲の下限になると考えられる.これに対し,加振締固め性が良好でなく,完 全充填が得られない配合(理論充填率86.3%,実測充填率81.1%)でも転圧実験を行い、施工性とセメ ント硬化体として得られる圧縮強度の確認を行った。その結果、今回の実験で採用した加振締固め性試 験では十分な充填性が得られない配合でも、振動ローラーによる転圧締固めによれば、コア圧縮強度で 2.9~6.1N/mm²の圧縮強度が得られた. このようなことから, 圧縮強度が 6N/mm² 程度以下の比較的 低い強度でよい場合には、完全充填できない配合を用いることもできると考えられ、このような配合の 選定は、従来のダム用コンクリートなど、貧配合のコンクリートの品質管理で行われている、タンピン グにより整形する供試体の圧縮強度で評価できると考えられる.

表-36 に充填性に基づく材料としての適用範囲を示す.要求される圧縮強度の観点からは,完全充填 できない配合で適用できる上限が存在すると考えられ,既往のダム用コンクリートなどの実績によれば, 3N/mm²程度以下で適用でき,6N/mm²程度以下は選定する配合によっては,適用できる場合があると 考えられる.一方,完全充填できる配合では,要求される圧縮強度が 6N/mm²程度以下の場合は,実強 度が高いため,やや過剰な性能となるが,いずれの強度範囲でも適用できる.これに対し,有害物質の 溶出抑制の観点からは,基本的には要求される圧縮強度にかかわらず,完全充填できる配合の適用性が 高いと考えられる.

適用できると	施工時の スランプ (cm)	要求される 圧縮強度 (N/mm ²)	要求される圧縮強度の 観点からの適用性		有害物質溶出抑制の 観点からの適用性	
考えられる用途			完全充填 できる配合	完全充填 できない配合	完全充填 できる配合	完全充填 できない配合
盛土材・嵩上材など	0	0.5 ~ 1.5	0	0	0	Δ
堰堤中詰材など	0	1.5 ~ 3.0	0	0	0	Δ
護岸内部材など	0	3.0~6.0	0	Δ	0	Δ
堤体上流側の外部材など	0	6.0~18.0	0	_	0	_
被覆ブロック・漁礁など	3~5程度	18.0程度	0	_	0	_

表-36 充填性に基づく材料としての適用範囲

○:適用可能, △:条件によって適用可能, -:適用の対象外

7.4.2. 品質管理手法の提案

図-64~図-67に本技術開発での実験結果から得られた知見に基づく,コンクリートがれきのセメント 硬化体製造にかかわる品質管理手法を示す.以下,図ごとに管理方法(案)の概要を述べる.

図-64 にコンクリートがれきの破砕方法と粒度分布の管理方法(案)を示す.コンクリートがれきを 用いたセメント硬化体の製造は、可能な限り粒度調整を行わず、多大な労力をかけずに用いることを目 標としているため、破砕機の刃間隔の調整で所定の粒度分布の範囲に入るようにすることが基本となる. しかしながら、集積されているコンクリートがれきの状態によっては、一次破砕のみでは所定の粒度に 調整できない場合も考えられる.このような場合には、一次破砕したコンクリートがれきを、再度、破 砕機の刃間隔を調整した上で二次破砕するか、これによっても適切な粒度が得られない場合は、粒径 5mm 以下の細骨材相当の砂分量を人工的に調整することで所定の粒度を確保する.これは例えば、津 波堆積物の混入量が少なく、粒径 5mm 以下の細骨材相当の成分が不足するような場合が考えられる. そのため、細骨材相当の砂として、津波堆積物を積極的に加えてもよい.また、ここでは必要に応じて 重金属などの溶出に関する試験を行う.なお、津波堆積物を含む破砕後のコンクリートがれきは、微粒 分量が通常のコンクリート用骨材に比べて多く、そのため含水率も高くなるが、表乾状態は通常のコン クリート用骨材と同様に判断でき、密度や吸水率などは、コンクリート用骨材に関する試験方法に準じ て評価できる.

図-65 に水セメント比に基づく配合設計の方法(案)を示す.この方法は,水セメント比に基づいて 配合を選定するものである、この方法では、まず要求される設計基準強度に対して、実構造物との差異 を勘案した割増係数γaを乗じた供試体圧縮強度を設定する.本実験の結果によれば,この安全率は2.15 となる.例えば,設計基準強度が 6.0N/mm²の場合には,小型ミキサで練混ぜて製作する供試体の圧縮 強度で 12.9N/mm² が必要強度となる.これを水セメント比と供試体圧縮強度との関係に当てはめ、水 セメント比が決定される.このとき,水セメント比と圧縮強度の関係曲線を得ることを目的に,中心と する水セメント比に対して、±10%の水セメント比での供試体製作も計画する.次に、本実験結果から 得られた S/A と完全充填するのに必要な単位ペースト量との関係から,単位水量,単位セメント量,お よび単位がれき量を求める. この配合からセメントペーストの充填性に関する指標αと, モルタルの充 填性に関する指標 βを算出し、おのおのが本実験結果から定めた適切と考えられる範囲 ($1.0 \le α \le 1.4$, $1.3 \leq \beta \leq 1.7$) に入ることを確認する.ここで、 *α*、 *β*のいずれかが不適切であれば、単位水量と単位 セメント量を調整して、α、βが所定の範囲に入るようにするが、例えば 5mm 以下の細骨材相当成分 の量が多い場合、すなわち S/A が大きい場合には、単位水量と単位セメント量が大きくなるため、これ が過大なときは S/A を調整することも考えられる.これによって定めた配合で試験練りを行い,所定の スランプと加振締固め性、および圧縮強度が得られることを確認する.さらに、実機ミキサによる試験 練りでスランプと加振締固め性を確認し,転圧実験で製作したセメント硬化体からコアを採取して圧縮 強度と密度を確認することで配合が選定される.このとき、コアの直径は、破砕したコンクリートがれ きの最大寸法 80mm の 3 倍以上を確保するため、 ϕ 250mm を基本とする. ただし、室内試験供試体や 実機実験での加振締固め供試体の直径は,最大寸法 40mm にウェットスクリーニングをして φ 150mm となることから、実際の施工時の品質管理でも 6 150mm を用いる. そのため、コアは 6 150mm も採取 して, 直径の影響がどの程度であるかを実機実験の際に確認する.

実機転圧コアで所定の圧縮強度が得られない場合には、フローの最初に戻って再検討することになる が、その場合には、その時に使用しているコンクリートがれきに合わせた管理図(参考図-2~参考図-10 に示した、水セメント比と圧縮強度の関係図、S/A と単位ペースト量の関係図、α・βの適切な範囲図、 コア圧縮強度と加振締固め供試体圧縮強度との関係図など)に修正する.このフローにしたがえば、水 セメント比に基づく配合、振動ローラーの起振力と転圧回数、管理基準 RI 密度、および実機ミキサで 混合したセメント混合物を加振締固めした供試体による管理基準圧縮強度が決められる.

図-66 に水セメント比に基づかない配合設計の方法(案)を示す. この方法は, 水セメント比に基づ かずに配合を選定するものである.まず,既往のダムコンクリートなどでの実績を参考に,要求される 圧縮強度に応じた単位水量と単位セメント量を3水準程度設定する.次に試験練りを行い,適切な練混 ぜ状態であることを目視により確認する.このときの判断基準としては,極端にドライ,もしくはウェ ットでないことを練混ぜたセメント混合物で確認することや、ミキサへのモルタルの付着具合などから 総合的に判断する.練混ぜ状態が適当と判断されれば、タンピングにより供試体を整形して製作する. このとき,使用するタンパーに応じて適切と考えられる締固めエネルギーを,締固め時間をパラメータ ーとして設定し、3水準程度の締固めエネルギーに対する供試体を製作して、所要の圧縮強度が得られ ることを確認する.さらに、実機ミキサによる試験練りで練混ぜ状態を確認し、転圧実験で転圧回数を パラメーターにしてセメント硬化体を製作し,これからコアを採取して圧縮強度と密度を確認する.こ の転圧実験により、所定のコア圧縮強度が得られる転圧条件が決まり、配合が選定される.また、タン ピングによる締固めエネルギーをパラメーターに製作した試験練り供試体と、転圧実験で転圧回数をパ ラメーターに製作したコア供試体の圧縮強度と密度を比較し、転圧により得られる圧縮強度を再現でき るタンパーの締固めエネルギーも決定される.このとき,コアの直径は,破砕したコンクリートがれき の最大寸法 80mm の3倍以上を確保するため、φ250mm を基本とする.ただし、室内試験供試体や実 機実験での加振締固め供試体の直径は,最大寸法 40mm にウェットスクリーニングをして φ 150mm と なることから、実際の施工時の品質管理でも φ 150mm を用いる. そのため、コアは φ 150mm も採取し て,直径の影響がどの程度であるかを実機実験の際に確認する.

実機転圧コアで所定の圧縮強度が得られない場合には、フローの最初に戻って再検討することになる

が、その場合には、その時に使用しているコンクリートがれきに合わせた管理図(参考図-11~参考図 -14 に示した、圧縮強度と締固め秒数の関係図など)に修正する.このフローにしたがえば、水セメン ト比に基づかない配合、振動ローラーの起振力と転圧回数、管理基準 RI 密度、および実機ミキサで混 合したセメント混合物を衝撃締固めした供試体の締固め秒数が決められる.

なお,水セメント比に基づかない配合の選定では,地盤改良土の考え方に基づいて単位セメント量,単 位水量を決定することも考えられる.その場合には,一軸圧縮強度に加え,三軸圧縮試験などにより得 られる粘着力 C と内部摩擦角φを得るように,図-66の供試体やコアによる圧縮強度測定の内容を置き 換えて考えればよい.

図-67 に実施工における品質管理方法(案)を示す.実施工では、まず破砕したコンクリートがれき の粒度分布を管理する.通常はふるい分け試験により行うが、日常管理においては、本実験で成果の得 られた画像解析手法(1回の計測に要する時間5分程度)を用いることで,効率的な管理が可能となる. 粒度分布が,配合設計の際に設定した所定の範囲にあることを確認し,所定の範囲に入らない場合には, 再度、コンクリートがれきの品質管理方法(案)に戻って検討する.実機ミキサでの練混ぜでは、練混 ぜ性状を確認する. 完全充填の配合ではスランプと締固め性を確認し, 完全充填の配合でない場合には 目視で確認する.このとき、練混ぜ性状が適切でない場合には、コンクリートがれきの含水率を測定し、 必要に応じて表面水の補正を行う.含水率の測定方法としては、フライパンを用いて強制的に乾燥させ る方法や,乾燥炉を用いて乾燥させる方法が通常行われているが,結果が得られるまでに時間を要する. そのため、本技術開発では検討を行っていないが、RI 測定法(放射線測定法)などにより効率的に含水 率を測定する方法の適用も考えられる.また、実機で練り混ぜたセメント混合物からテストピースを採 取して圧縮強度と密度を測定し,要求される圧縮強度を満足することを確認する.このときの成型方法 としては、完全充填の配合では本実験で用いた加振締固め性試験装置を用い、完全充填の配合でない場 合には、タンパーを用いて予め定められた締固めエネルギーを加えて行う。実機による転圧では、沈下 量と RI 密度を測定する. 沈下量は適切な転圧締固めが行えていることを確認する指標となり、予め定 められた転圧回数と沈下量との関係を基準に評価する.また,RI密度はコア密度との相関があり、コア 密度はコア圧縮強度との直接の相関性は低いが、コア圧縮強度の下限値を知る指標にはなるため、間接 的に圧縮強度を確認し、実施工における圧縮強度を管理する目安にできる.以上の品質管理の結果は、 品質管理記録として残し、日常の品質管理に反映させる.

表-37 に実施工における測定項目ごとの測定頻度(案)を示す.上述の実施工での品質管理において, 適切な管理を行うための測定頻度は、コンクリートがれきの状態やセメント硬化体の使われる用途によ って異なると考えられるため、一律に定めることは難しいが、本技術開発での実験を通じて妥当と思わ れる頻度を案として示す.実機実験では転圧時に沈下量計測を行ったが、実施工においては所定の転圧 回数で施工することから、転圧時の沈下量計測は、日常の品質管理項目から除外した.ただし、各層で 転圧回数の確認を行うこととする.また、津波堆積物を含むコンクリートがれきからの有害物質溶出量 について、本実験では環境庁告示 13 号(産業廃棄物に含まれる金属等の検定方法)の方法に準じて測 定したが、本技術開発での用途はセメント硬化体として利用するものであり、産業廃棄物に係るもので はないため、日常管理においては環境庁告示 46 号(土壌の汚染に係る環境基準について)の方法に準 じて測定するものとした.セメント硬化体については、供試体形状のままで水に浸漬して溶出量を測定 する土木学会規準 JSCE-G 575(硬化したコンクリートからの微量成分溶出試験方法(案))に準じる ものとした.さらに、水セメント比に基づかない配合の選定で、地盤改良土の考え方に基づいて単位セ メント量、単位水量を決定する場合には、一軸圧縮強度に加え、三軸圧縮試験などにより得られる粘着 力 C と内部摩擦角 φ を実施工における測定項目に加えることも考えられる.

測定対象	測定項目	測定方法	測定頻度
		RI法(放射線測定法)	連続計測
	含水率	強制乾燥法(フライパン法)	1回/2時間
		強制乾燥法(乾燥炉法)	1回/日
破砕した	約由八五	画像解析法	連続計測
コンクリートがれき	和皮力 10	ふるい分け法 (JIS A1102)	1回/日
	密度・吸水率	JIS A1109, JIS A1110	1回/日
	単位容積質量・実積率	JIS A1104	1回/日
	有害物質溶出量	環境庁告示第46号の方法	1回/週
	スランプ	JIS A1101	1回/日
セメント混合物	加振締固め性	JSCE-F508	1回/日
	転圧回数	目視確認	各層
	供試体圧縮強度・密度	JIS A1108	1回/日
	(粘着力・内部摩擦角)	(土の三軸圧縮試験)	(1回/日)
セメント硬化体	現地密度	RI法(放射線測定法)	1回/日
	有害物質溶出量	土木学会規準JSCE-G 575	1回/週
	コア圧縮強度・密度	JIS A1107	必要に応じて

表-37 実施工における測定項目ごとの測定頻度(案)

セメント硬化体の測定のうち、粘着力と内部摩擦角は、地盤改良土の考え方に準じて材料特性値を決定 したときに測定項目に加える。

参考図-1 実測に基づく適切な練混ぜ性、締固め性が得られた粒度範囲
測定物質 /測定項目	環境基準 ^{*2} (mg/L以下)	コンクリートがれき, 津波堆積物からの溶出量 (mg/L)										
		A70		B70		C70		津波堆積物		分析機器	分析手法 ^{*3}	備考
		1	2	1	2	1	2	1	2			
カドミウム	0.003	0.001以下	0.001以下	0.001以下	0.001以下	0.001以下	0.001以下	0.001以下	0.001以下	ICP	JISK0102	
鉛	0. 01	0.001以下	0.001以下	0.001以下	0.001以下	0.001以下	0.001以下	0.002	0.007	ICP	JISK0102	
六価クロム	0. 05	0.005以下	0.005以下	0.005以下	0.005以下	0.005以下	0.005以下	0.005以下	0.005以下	原子吸光	JISK0102	
砒素	0. 01	0. 002	0. 002	0.002	0. 002	0. 002	0. 002	0.004	0. 004	ICP	JISK0102	
総水銀	0.0005	0.00005以下	0.00005以下	0.00005以下	0.00005以下	0.00005以下	0.00005以下	0.00005以下	0.00005以下	原子吸光(水銀専用)	JISK0102	
セレン	0. 01	0. 001	0.001以下	0.006	0.004	0.001	0.001以下	0.001以下	0.001以下	ICP	JISK0102	
ふっ素	0.8	0. 343	0.542	0.652	0.553	0. 424	0. 446	0. 154	0.149	IC	JISK0102	
ほう素	1.0	0.056	0.01以下	0. 110	0. 039	0.013	0.008	0.085	0.055	ICP	JISK0102	
シアン	検出されないこと	未検出	未検出	未検出	未検出	未検出	未検出	未検出	未検出	吸光度	JISK0102	
pH	-	11.65	11.95	11.66	11.86	11.38	11.39	9.64	9.15	 pHメーター(ガラス電極)	JISK0102	
電気伝導度	-	200	245	128	187	131	133	15. 17	9.95	電気伝導度計	JISK0102	海水:4800ms/m程度
CI-	-	84. 7	91.1	53.1	59.7	59.4	82.1	31.9	32.8	電位差滴定装置	JCI-SC5	海水:13400mg/L程度

参考表-1 コンクリートがれきおよび津波堆積物からの有害物質溶出試験結果*1

*1:環境庁告示13号(産業廃棄物に含まれる金属等の検出方法)に準拠し、試料作製、試料液準備、溶出を行った.

*2:環境庁告示 46 号 (土壌の汚染に係わる環境基準)に準拠した.ただし、カドミウムについては、地下水環境基準の 0.003mg/L 以下 (環告 46 号: 0.01mg/L

以下) とした.

*3:環境庁告示 18 号に記載されている, JIS K 0102(工場排水試験方法)に準拠し、測定を行った.ただし、Cl については JCI-SC5 に準拠した.

	環境基準 ^{*2} (mg/L以下)		セメント硬化体	本からの溶出量				
測定物質 /測定項目		供試	体①	供試体②		分析機器	分析手法 ^{*3}	備考
		24時間後	48時間後	24時間後	48時間後			
カドミウム	0.003	0.001以下	0.001以下	0.001以下	0.001以下	ICP	JISK0102	
鉛	0. 01	0.001以下	0.001以下	0.001以下	0.001以下	ICP	JISK0102	
六価クロム	0.05	0.005以下	0.005以下	0.005以下	0.005以下	原子吸光	JISK0102	
砒素	0.01	0.002	0. 002	0. 002	0.002	ICP	JISK0102	
総水銀	0.0005	0.00005以下	0.00005以下	0.00005以下	0.00005以下	原子吸光(水銀専用)	JISK0102	
セレン	0.01	0.001以下	0.001以下	0.001以下	0.001以下	ICP	JISK0102	
ふっ素	0.8	0. 318	0. 156	0. 327	0. 161	IC	JISK0102	
ほう素	1.0	0.01以下	0.01以下	0.01以下	0.01以下	ICP	JISK0102	
シアン	検出されないこと	未検出	未検出	未検出	未検出	吸光度	JISK0102	
рН	-	11.67	11.44	11.72	11.44		JISK0102	
電気伝導度	-	89.3	52.7	93.4	51.8	電気伝導度計	JISK0102	海水:4800ms/m程度
CI-	-	50. 1	42.1	33.9	42.4	電位差滴定装置	JCI-SC5	—————————————————————————————————————

参考表-2 セメント硬化体からの有害物質の溶出量*1

*1: JSCE-G 575-2005 (タンクリーチング試験) に準拠し, 試料作製, 試料液準備, 溶出を行った.

*2:環境庁告示 46 号 (土壌の汚染に係わる環境基準)に準拠した.ただし、カドミウムについては、地下水環境基準の 0.003mg/L 以下 (環告 46 号: 0.01mg/L

以下) とした.

*3:環境庁告示18号に記載されている,JISK0102(工場排水試験方法)に準拠し、測定を行った.ただし、Cl についてはJCI-SC5に準拠した.

*1:割増し係数γa(実機転圧締固めコア供試体に対する室内加振締固め供試体の圧縮強度比) 参考図-2 室内加振締固め供試体と実機転圧締固めコア供試体の圧縮強度の比較

参考図-4 細骨材質量率ごとの単位ペースト量と加振締固め充填率の関係

*1:割増し係数 γm(実機転圧締固めコア供試体に対する室内加振締固め供試体の圧縮強度比) 参考図-9 室内加振締固め供試体と実機転圧締固めコア供試体の圧縮強度の比較

*1:割増し係数 γ。(実機転圧締固めコア供試体に対する実機加振締固め供試体の圧縮強度比) 参考図-10 実機加振締固め供試体と実機転圧締固めコア供試体の圧縮強度の比較

参考図-15 画像解析手法により求めたコンクリートがれきの粒度分布

7.5. まとめ

要素実験,実機実験を行って得られた知見に基づき,破砕後のコンクリートがれきにセメント と水を混合して,敷均し,転圧による施工をするための品質管理方法を確立した.以下にその要 点を整理して述べる.

①材料試験の結果,破砕したコンクリートがれきは,粒径 0.075mm 以下の微粒分が 22.5%と多 く含まれることがわかった.そのため,粒径が 5mm 以下のがれきの吸水率は 11.0%と高く,屋 外に野積みして保管した場合の粒径 5mm 以下のがれきの含水率は 15~20%程度と高い状態であ った.

②練混ぜ試験において、コンクリートがれきの含水率を正しく補正してセメントと水を混合し、 加振締固め性試験を行って良好な充填性が得られる配合を選定すれば、コンクリートがれきを使 用したセメント硬化体でも、水セメント比に応じた圧縮強度を発現することが確かめられた.

③実機実験では、加振締固め性が良好な配合と良好でない配合で練混ぜ、敷均し、転圧を行った が、いずれの配合でも振動ローラーによる転圧では締固めが行えることが確認できた.

④要素実験(材料試験,練混ぜ試験,および強度試験)と実機実験の結果から,水セメント比に 基づいて配合設計する場合,もしくは有害物質の溶出抑制の観点からセメント硬化体に密実さが 要求される場合には、加振締固め性が良好な配合を選定すればよいことが確かめられた.一方, 水セメント比に基づかないで配合設計する場合,もしくはセメント硬化体に密実さが要求されな い場合には、従来のダム用コンクリートなどで行われている、タンピングにより整形する円柱供 試体と転圧により製作する大型供試体から採取するコアの圧縮強度を比較して評価する方法に 準じればよいと考えられた.ただし、タンピングによる方法での確認は本実験では実施していな いため、要素実験や実機実験での確認が課題として残された.

⑤実験結果とその知見に基づいて,構造物に適用するための品質管理手法を提案した.ここでは, コンクリートがれきの破砕方法と粒度分布の管理方法,水セメント比に基づく配合設計の方法, 水セメント比に基づかない配合設計の方法,および実施工における品質管理方法,についてとり まとめて提案した.

以上のとおり,破砕したコンクリートがれきにセメントと水を混合して用いるセメント硬化体 について,実験により得られた知見に基づく製造方法と施工方法,ならびに品質管理手法を確立 できたと考えられ,本技術開発の目的を満足する成果が得られた.

なお、本書で示した実験結果とこれに基づく知見は、岩手県釜石市において集積されているコ ンクリートがれきを用いて得られたものであるが、この成果は、以下の点に留意すれば、他の地 域で発生したコンクリートがれきを用いる場合のセメント混合物の製造、施工、および品質管理 方法にも、広く適用できると考えられる.以下に、実験により確認できた本技術の特徴と適用す る際の留意点を記す.

【本技術の特徴】

①津波堆積物を含むコンクリートがれきを最大寸法 80mm 程度に破砕し,基本的に粒度調整を 行わずにセメントと水を混合し,スランプが 0cm の超硬練りセメント混合物として,振動ロー ラーによる転圧締固めで施工することができる.これにより,所要の圧縮強度を有するセメント 硬化体が得られる.

②使用するコンクリートがれきに含まれる 5mm 以下の細粒分の量が少ない場合,津波堆積物を 積極的に加えることができ,津波堆積物も有効に活用することができる.

③本技術を適用するのに必要な、コンクリートがれきの破砕方法や配合設計方法を実験結果に基づいて整理し、品質管理方法としてとりまとめている.

【本技術を適用する際の留意点】

①コンクリートがれきに含まれる重金属などの有害物質の水への溶出量を測定し、国が定める環境基準に適合するコンクリートがれき、もしくはそれに適合するような処置を施したコンクリートがれきを使用する.

②セメント硬化体に含まれる,コンクリート以外のがれきの種類と量(例えば,木質がれき,金属がれきなど)を測定し,セメント硬化体としての利用において有害とならないことを確認する. ③破砕したコンクリートがれきには微粒分量が多く含まれ,吸水率も通常のコンクリート用骨材 に比べて高いため,含水率も高くなる.そのため,セメント混合物を製造する際には含水率を正 確に測定し,練混ぜ水量が所定のものとなるように,コンクリートがれきの含水率を適切に管理 する.

④セメント混合物の配合選定方法には2通りの方法があり,締固め性試験による充填性の違いに 基づく.完全充填できる配合は、要求される圧縮強度が比較的高い場合や有害物質の溶出が懸念 される場合に適する.一方、完全充填できない配合は、要求される圧縮強度が比較的低い場合に 適する.なお、後者の場合には、地盤改良土と同様な考え方で、土の三軸圧縮試験などにより得 られる粘着力Cと内部摩擦角φに基づく配合設計アプローチも可能である.

刊行書籍又は雑誌名(雑誌のときは	刊行年月日	刊行書店名	執筆者氏名
雑誌名、巻号数、論文名)	1414 1 24 1		
【論文. 報告. 技術情報誌】			
"コンクリート系がれきの有効利用	2012 年 10 月	国土交诵省北陸地	堀口腎一. 丸屋剛
技術" 平成 24 年度建設技術報告会	31日	方整備局	
	0111		
"特集 震災対応型技術開発公墓の	2012 年 10 月	財団法人 先端建設	丸屋剛, 堀口賢一
研究成果 コンクリートがれきの有	31 日	技術センター	
効利用技術の開発" 建設リサイク			
ル 2012・秋号 Vol 61			
"コンクリートがれきのセメント硬	2012年11月9	セメント新聞社	堀口賢一, 古田敦
化体としての有効利用技術の開発",	日		史,松元淳一,江田
第2回コンクリート技術大会			正敏, 丸屋剛
"東日本大震災で発生したコンクリ		上 + 7 + - 11 + + + 人 + 1	
ートがれきの有効利用技術の開発",	2012年12月1	入成建設株式会社	出口賞一, 古田教
大成建設技術センター報,第45号,	H		史, 松元得一, 小永
2012			
"コンクリートがれきを用いたセメ	2013年7月9	社団法人	松元淳一, 堀口腎
ント硬化体の配合選定に関する実験	日 (掲載予定)	日本コンクリート	一 片山三郎 丸屋
的検討",コンクリート工学年次大		工学会	
会 2013			1.1.1
"コンクリートがわきを田いたセイ			
コンクリートかんさを用いたヒア	2012年7月9	社団法人	古田敦史, 堀口賢
ン下破11年の初生わよい旭工住の計	日 (掲載予定)	日本コンクリート	一, 松元淳一, 丸屋
1個 , コングリート工子中次人云		工学会	岡山
2013			
"コンクリートがれきを用いたセメ	0010 左 0 日 4		
ント硬化体の配合選定方法につい	2013年9月4	公 <u></u> 位団法人 上士学会	松元淳一,堀口賢
て",コンクリート工学年次大会	口(摘載了正)	工小子云	一,坂本厚,丸屋剛
2013, 第 68 回土木学会年次学術講			
演会			

8. 研究成果の刊行に関する一覧表

"コンクリートがれきを用いたセメ ント硬化体の配合選定方法および品 質管理方法",大成建設技術センター 報,第46号,2013	2013 年 12 月 (投稿予定)	大成建設株式会社	松元淳一, 堀口賢 一, 坂本淳, 丸屋剛
【新聞発表】 「2011 年度建設技術開発助成制度 【震災対応型】課題採択」	2012年1月26 日	建設通信新聞	
「コンクリートがれきを母材とした セメント硬化体利用技術の開発」	2012年3月12 日	建設通信新聞	
「コンクリがれき 復興資材に活用 大成建設 被災地で実証」	2012 年 4 月 5 日	日刊工業新聞	
「コンクリがれき 手間かけず再利 用へ 大成建設 防潮堤など復興用 途に」	2012年4月16 日	建設工業新聞	
「コンクリがれき 破砕,再び固め て活用 大成建設 普通スペックに 迫る強さ」	2012 年 5 月 4 日	日刊工業新聞	
【シンポジウム】 "コンクリートがれきの有効利用技 術"震災がれきと産業副産物のアロ ケーション最適化コンソーシアム 技術講習会	2013年2月27 日	震災がれきと産業 副産物のアロケー ション最適化コン ソーシアム	丸屋剛
"コンクリートがれきのセメント硬 化体としての有効利用技術", 震災 がれきと産業副産物のアロケーショ ン最適化コンソーシアム 技術シン ポジウム	2013 年 6 月 (掲載予定)	震災がれきと産業 副産物のアロケー ション最適化コン ソーシアム	堀口賢一,松元淳 一,丸屋剛

9. 研究成果による知的財産権の出願・取得状況

				1
知的財産権の内容	知的財産権の	出願年日日	 雨得年日日	権利者名
26613%1/至4度。21-14U	VED 2X1) TETE *>			「田川市」日、日
	插 新 平 早			
	俚积、笛石			
コンカリートの制造士法	些面 9019	9019 年		堀口堅二 十田
コンクリートの表担力伝	行順 2013	2012 平		畑口貝 ,白田
	-9900559			散山 扒二洁
	-229608	10月17日		叙史, 松兀停一

10. 成果の実用化の見通し

今回の技術開発では、震災で発生したコンクリートがれきについて、より実態に即したものを用いて実験することとし、岩手県釜石市で集積されているコンクリートがれきを用い、同所にて試験体の製作実験を実施した.また、室内実験と実機実験に用いたコンクリートがれきの破砕には、実際の施工に用いられる移動式破砕機を使用した.さらに実機実験におけるセメント硬化体の製造には、移動式ミキサや振動ローラーなどの重機を用いて、100m²程度の施工実験も行った.このことから、実用化と遜色ない実験が行えたと考えている.

ただし、コンクリートがれきは、従来からの処理方法もあることから、比較的順調に処理 が進められている.一方、砂や粘土など粒度の細かい津波堆積物は、その処理が遅々として 進んでいないのが現状である.本技術は、コンクリートがれきにセメントと水を混合して利 用するものであるが、通常のコンクリートと同様にある程度の細粒分を含むことが必要であ るため、この細粒分として津波堆積物を積極的に活用することも考えられる.このような観 点から、本技術をコンクリートがれきのみならず、津波堆積物の有効利用技術としても広く 活用されるように技術の展開を図りたい.

11. その他 なし

(注)

- 用紙の大きさは、日本工業規格で定めるA列4とし、縦位置左綴とすること。
 各項目の記入にあたっては、数字、図表等を用いて詳細に説明すること。記入量に応じて、適宜、欄を引き伸ばして差し支えない。
- 「課題番号」について 交付決定通知に示された諷題番号を記入すること。
- 「研究課題名」について
 平成 年度建設技術研究開発費補助金交付申請書に記載した研究課題名を記入する
 こ

4. 「研究期間」について

当該研究課題について補助金が交付された期間(年度)を記入すること。

- 5.「代表者及び研究代表者、共同研究者」について
 - (1)「代表者は1人又は1法人を記入すること。研究代表者は1人を記入すること。共同 研究者は、研究に参加している者全てを記入すること。
- (2)研究組織の変更により代表者又は研究代表者を交替している場合は、交替後の研究者 名を記入すること。
- 6. 「7. 研究・技術開発の内容と成果」について
- (1) 当該研究期間に行った研究によって得られた成果を、各年度の交付申請書の「研究・ 技術開発の目的及び目標」「本年度の実施計画」と対比させてわかりやすく記入する こと。
- (2) 主要な研究方法、手段等の経過を詳細に記入すること。
- 7. 「8. 研究成果の刊行に関する一覧表」について
- (1) 記入した書籍又は雑誌については、その刊行物又は別刷り一部を添付すること。
- 8. 「9. 研究成果による知的財産権の出願・取得状況」

と。

- (1) 説明上必要な書類を、適宜、添付すること。
- 9. 「10. 成果の実用化の見通し」について
- (1)研究・技術開発の成果による実用化について、具体的な計画がある場合にはその内容 を記載すること。