
Wタイプ - 3 (B = 12.0m、 H = 18.0m)

20m当り

	項 目		規格	形状寸法	単位	数量	摘要
シ	_	۲	防災シート	3600 × 5400	m²	246.5	
屋	根	材	アルミ合金	29 × 240 × 4000	枚	96	
	ΉX		アルミロ並	29 × 240 × 2000	枚	48	
屋	根 梁	材	S S 4 0 0	I - 180 × 100 × 12500	本	6	
屋	根受け梁	材	S S 4 0 0	H-150 × 150	m	20	
大	引 受	け	A 1 5 H	150 × 150	個	12	
囲 枠 材	側	面	枠組み足場	1219 × 1829	掛け㎡	12	
材	褄	部	単管パイプ (STK500)	48.6	m	72	
補	強	材	単管パイプ	48.6	m	120.0	
ベ-	- スジャッ	ノキ	KA-752		個	6	
ジ	ョイン	۲			個	21	単管パイプ継ぎ材
ク	ラ ン	プ	直交、自在、固定形		個	108	
ボノ	レト・ナッ	ノト		M16	セット	96	

[⑦ PWタイプ: B= 7.5m、 H_1 =3.4m、 H_2 =9.0m]

PW917 (B = 7.5m, $H_1 = 3.4m$, $H_2 = 9.0m$)

20m当り

	項 目		規格	形状寸法	単位	数量	摘 要										
シ	_	۲	防災シート	3600 × 5400	m²	518.1											
屋	根	材 アルミ合金		29 × 240 × 4000	枚	150											
屋	根梁	材	既製ビーム	Max7500	本	11											
屋	根受け梁	材	S S 4 0 0	H-150 × 150	m	40											
大	引 受	け	A 1 5 H	150 × 150	個	23											
	側	面	=	_	-	—	—	—	_	_		_	枠組み足場	1219 × 1829	掛け㎡	180.0	
囲 枠 材.	1月)		パイプサポート	60.5	本	11											
יויט -	褄	部	単管パイプ (STK500)	48.6	m	89.0											
補	強	材	単管パイプ	48.6	m	232.0											
ベ	ースジャッ	+	KA-752		個	4											
ジ	ョイン	۲			個	33	単管パパ継ぎ材										
ク	ラ ン	プ	直交、自在、固定形		個	151											
ボ	ルト・ナッ	۲		M16	セット	132											
階	段	枠		1.829 ^m × 1.9 ^m × 0.45 ^m	個	4											

第5章:計算例

1.設計条件

1) 使用材

	使 用 材	荷重	断面係数	部材配置	
屋根板	アルミ合金板	99 N	5.21 cm ³	0.25 ^m ctc	
屋根梁	既製ビーム	147N / m	-	2.0 ^m ctc	
屋根受梁	H - 150 × 150 (SS400)	309 N / m	219 cm ³	-	
囲 枠	枠組足場	-	-	1.829 ^m ctc	

注)使用材自重は副部材重量として主部材の10%増しとする。

2) 荷 重

死 荷 重 使用材自重

雪 荷 重 単位体積重量 s = 981 N / m³

設計積雪深 D = 0.60m

雪荷重 ws=981N/m³×0.6m=589N/m²

作業荷重 屋根板材に対して; P l = 740Nの集中荷重載荷

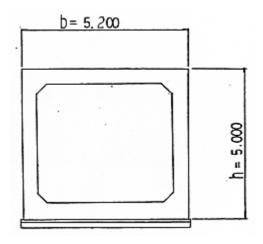
梁部材及び囲枠に対して; w l = 150 N / m²を載荷

死荷重 + 雪荷重 + 作業荷重 + 風荷重 通常風速; V = 15m / s

3) 各部材の許容値

アルミ合金板材 = 107900kN / m²

既製ビーム材 Mr = 13730 N・m


H - 150×150 (SS400) = 235350kN/m² (仮設時割増し率 = 1.5)

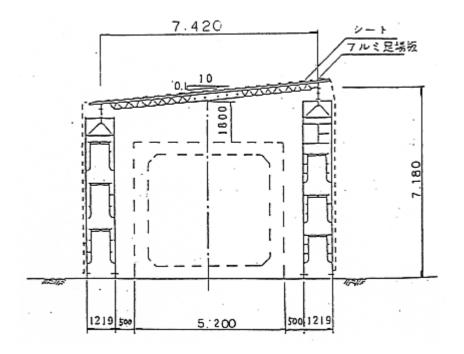
枠組足場材 Ra=21330N(枠組足場天端中央点)

4) 荷重組合せ

	 		荷	重	—	合	_	
/ '	 	死荷重					_	
囲	枠	死荷重 死荷重	+ 風	荷重				

2. 構造寸法

3. 仮囲い寸法の計算


仮囲い幅 B

仮囲い高さH

H = h + 1.80 + × 0.10 (10%勾配)
=
$$5.00 + 1.80 + \frac{7.50}{2} \times 0.10 = 7.18 \text{m}$$

よって仮囲いタイプはWタイプで次図の様になる。

断 面 図

4. 各部材の設計

- (1) 屋根板部材の計算
 - 1) 荷重計算
 - a) 死荷重

屋根板自重(W_d)

$$W = 99 N (29 \times 240 \times 4,000)$$

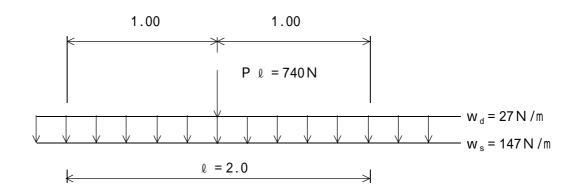
$$W_d = \frac{99}{4.00} \times 1.1 = 27 \text{ N / m}$$

b) 雪荷重

単位体積重量 s = 981 N / m³

設計積雪深 D = 0.6m

雪荷重(屋根板1枚当り幅0.25m分の雪荷重)


 $W_s = 981 \, \text{N} / \text{m}^3 \times 0.6 \, \text{m} \times 0.25 \, \text{m} = 147 \, \text{N} / \, \text{m}$

c) 作業荷重

スパン中央にP ℓ = 740Nの集中荷重を使用させる。

2) 断面力の計算

連続ばりであるが、屋根梁支間 ℓ = 2.0mの単純ばりとして求める。

Mmax =
$$1/8 \times (w_d + w_s) \times \ell^2 + 1/4 \times P \ell \times \ell$$

= $1/8 \times (27 + 147) \times 2.0^2 + 1/4 \times 740 \times 2.0$
= $87 + 370 = 457 \text{ N} \cdot \text{m}$

3) 応力度計算

$$= \frac{M \text{ max}}{Z} \qquad (Z = 5.21 \text{ cm}^2, _a = 107900 \text{ k N / m}^2)$$

$$= \frac{457 \times 10^{-3}}{5.21 \times 10^{-6}} = 87716 \text{k N / m}^2 < 107900 \text{k N / m}^2$$

4) 屋根梁設計用反力の計算

反力は連続ばりとして求める。

a) 死荷重

$$R_d = W_d \times \ell = 27 \times 2.0 = 54 N$$

b) 雪荷重

$$R_s = W_s \times \ell = 147 \times 2.0 = 294 N$$

c) 作業荷重

$$R \ell = W \ell \times 0.25 \times \ell = 150 \times 0.25 \times 2.0 = 75 N$$

(2) 屋根梁部材の計算

1) 荷重計算

作用荷重は、前項の屋根梁設計用反力参照

a) 死荷重

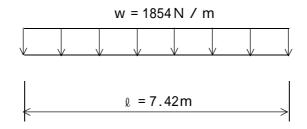
屋根板荷重

屋根梁自重

$$w_{d2} = 147 \text{ N / m} \times 1.1 = 162 \text{ N / m}$$

 $w_{d} = 378 \text{ N / m}$

b) 雪荷重


c) 作業荷重

d) 荷重合計

$$W = 378 + 1176 + 300 = 1854 N / m$$

2) 断面力の計算

仮囲い幅Bを支点した単純ばりとして求める。

Mmax =
$$1/8 \times W \times \ell^2$$

= $1/8 \times 1854 \times 7.42^2 = 12760 \text{ N} \cdot \text{m}$

3) 応力度計算

既成ビームの場合抵抗モーメント (M_r) 以下であればよい。

 $M \max = 12760 \, \text{N} \cdot \text{m} < M_r = 13730 \, \text{N} \cdot \text{m}$

抵抗モーメント以内にある為安全である。

4) 屋根受け梁設計用反力の計算

a) 死荷重

$$R_{2d} = 1/2 \times W_d \times \ell = 1/2 \times 378 \times 7.42 = 1402 N$$

b) 雪荷重

$$R_{2s} = 1/2 \times W_s \times \ell = 1/2 \times 1176 \times 7.42 = 4363 N$$

c) 作業荷重

$$R_2 \ell = 1/2 \times W \ell \times \ell = 1/2 \times 300 \times 7.42 = 1113 N$$

(3) 屋根受け梁部材の計算

1) 荷重計算

作用荷重は前項の屋根受けの梁設計用反力参照

a) 死荷重

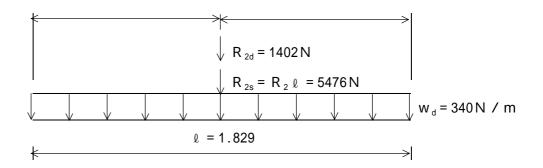
屋根梁反力

$$R_{2d} = 1402 N$$

受梁自重

$$W_d = 309 \times 1.1 = 340 N / m$$

b) 雪荷重


$$R_{2s} = 4363 \, N$$

c) 作業荷重

$$R_{2} \ell = 1113 N$$

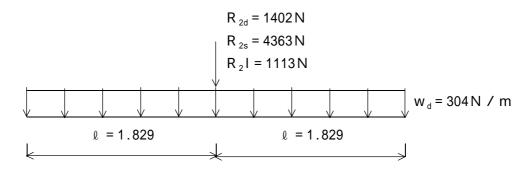
2) 断面力の計算

連続ばりであるが、枠組足場の間隔(ℓ max = 1.829m)を支点した単純ばりとして求める。

Mmax =
$$1/8 \times W_d \times \ell^2 + 1/4 \times (R_{2d} + R_{2s} + R_2 \ell) \times \ell$$

= $1/8 \times 340 \times 1.829^2 + 1/4 \times (1402 + 5476) \times 1.829$
= $142 + 3145 = 3287 \,\text{N} \cdot \text{m}$

3) 応力度計算


H - 150 x 150 x 7 x 10
Z = 219 cm³
=
$$\frac{M}{Z}$$
 = $\frac{3287 \times 10^{-3}}{219 \times 10^{-6}}$ = 15009kN / m² < 235350kN / m²

許容応力度に余裕があるが、受け梁は屋根及び囲枠との接合を重視するため H - 150×150を標準とする。

4) 囲枠設計用反力

反力は連続ばりとして求める。

a) 死荷重

$$R_{3d} = R_{2d} + W_d \times \ell$$

= 1402 + 304 × 1.829 = 1958 N

b) 雪荷重

$$R_{3d} = R_{2d} = 4363 N$$

c) 作業荷重

$$R_3 \ell = R_2 \ell = 1113N$$

(4) 囲枠の計算

1) 荷重計算

鉛直作用荷重は前項の囲枠設計反力参照

a) 死荷重

$$R_{4d} = R_{3d} = 1958 N$$

b) 雪荷重

$$R_{4s} = R_{3s} = 4363 \,\text{N}$$

c) 作業荷重

$$R_4 \ell = R_3 \ell = 1113N$$

d) 風荷重による枠組足場反力

風荷重の計算は4頁に示した「1-3.荷重/(4)風荷重」による。

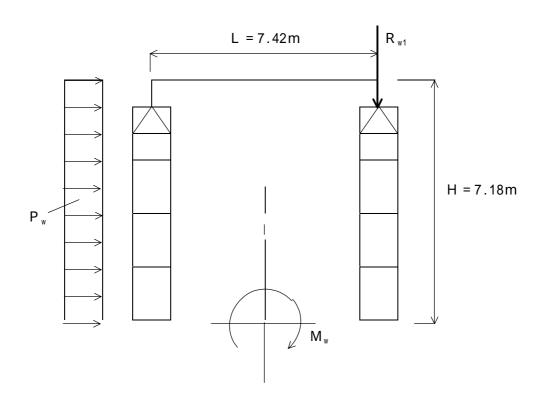
$$P W = \frac{1}{16} \times (K \cdot V)^2 \times 9.80665 \times C \times B$$

Pw:足場に作用する単位長風荷重 N/m

K : 高さによる補正係数 h 15m の場合 K = 1.00

V : 設計風速 通常 V = 15m/s ("死+雪+作業+風"計算時)

最大 V = 25m/s (" 死 + 風 " 計算時)


C : 風力係数 C = 1.3

B:作用幅 B=1.829m(枠組最大間隔)

2) 断面力の計算

) 死荷重と組合せる場合(V=25m/s)

$$P_w = \frac{1}{16} \times (1.0 \times 25)^2 \times 9.80665 \times 1.3 \times 1.829$$

= 911 N / m

風荷重による反力

$$R_{w1} = \frac{Mw}{L}$$

$$M_{w} = 1/2 \times P_{w} \times H^{2} ($$
 枠組足場の下端を固定とした片持ばりのモーメント)
$$= 1/2 \times 911 \times 7.18^{2} = 23482 \, \text{N} \cdot \text{m}$$

$$R_{w1} = \frac{23482}{7.42} = 3165 \, \text{N}$$

) 死荷重 + 雪荷重 + 作業荷重と組合せる場合(V = 15m/s)

$$P_w = \frac{1}{16} \times (1.0 \times 15)^2 \times 9.80665 \times 1.3 \times 1.829$$

= 328 N / m

風荷重による反力

$$R_{w2} = \frac{Mw}{L}$$

$$M_{w} = 1/2 \times P_{w} \times H^{2}$$

$$= 1/2 \times 328 \times 7.18^{2} = 8455 \text{ N} \cdot \text{m}$$

$$R_{w2} = \frac{8455}{7.42} = 1139 \text{ N}$$

- 3) 枠組の許容値に対する照査
 - a) 死荷重 + 風荷重

$$R_{4d} + R_{w1} = 1958 + 3165 = 5123 N < 21330 N$$

b) 死荷重+雪荷重+作業荷重+風荷重

$$R_{4d} + R_{4s} + R_{4} \ell + R_{w2} = 1958 + 4363 + 1113 + 1139 = 8573 N < 21330 N$$

いずれも許容内にある為安全である。