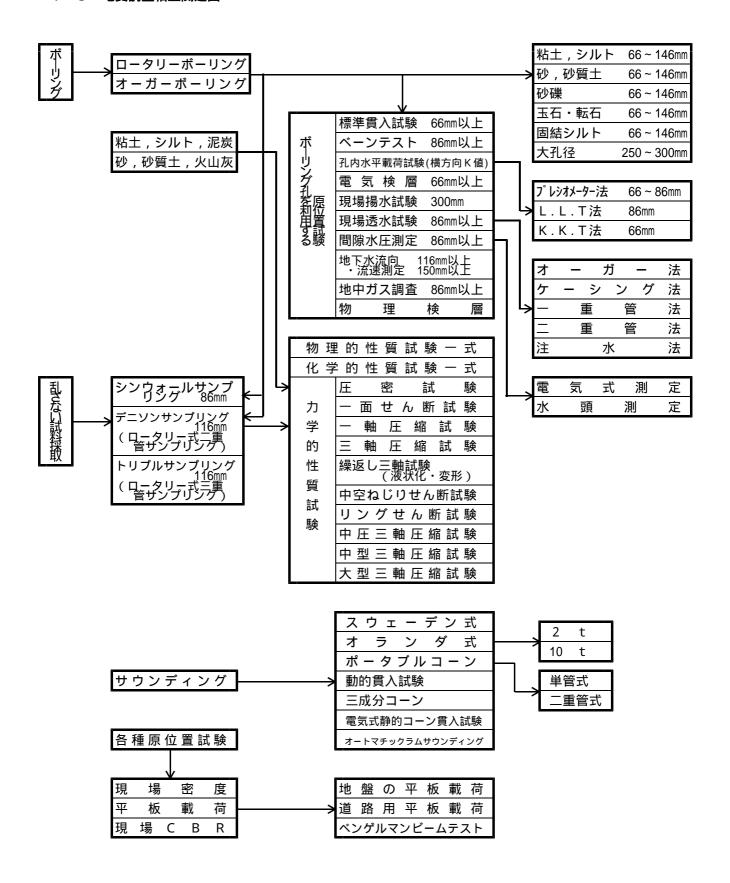

第3編 地質調査業務

第1章 地質調査積算基準

第1節 地質調査積算基準

1-1 地質調査業務の構成



1 - 2 地質調査の目的と方法

下表は、一般的な場合を記述しており、ボーリング深度等の決定については調査目的・現地状況等により判断すること。

調査目的	ボ - リ ン グ 深 度	地質調査	土質試験
【独立した基礎】	その位置の圧力が載荷重(荷重に	ボーリング,標準貫入試	物理的性質試験,一軸
地層分布の確認 ,	よる地面の圧力)の10%になる深さ	験,乱さない試料の採取	又は三軸圧縮試験,圧
支持力,沈下,水平	まで。	。砂,レキ層が支持層と	密試験。
抵抗の確認。	岩が浅い所では基礎の最も低い面	 なる場合は,載荷試験,	
 杭基礎の場合 , 杭	より10m以上の深さにするのが普通	 深層載荷試験 , K 値測定	
種によっては腐食性	である。	 , 腐食性調査 , 間隙水圧	
調査。		測定を行う場合もある。	
水圧測定等を行う			
【斜面の安定】	仮想すべり面の通る位置まで固い	ボーリング , サウンディ	物理的性質試験,一軸
地層分布の推定。	地層まで,地形から見てそこまでは	ングで補足,標準貫入試	又は三軸圧縮試験(地
せん断力の決定。	すべり面が到達しないであろうと思	験,乱さない試料の採取	盤改良又は盛土荷重に
水位の確認。	われる深さまで。	0	よる強度増加を見込む
			場合は q c) , 圧密試
			験, 土質の分布状態の
			把握は特に重要となる
			ので土質試験は数多く
			実施されるのが普通。
【深い根切り】	狭い根切りの場合,底幅の0.75~	ボーリング,標準貫入試	物理的性質試験,一軸
地層分布の推定。	1倍の深さ。	験,現場透水試験又は揚	又は三軸圧縮試験,砂
せん断力の決定。	根切りが地下水面上で良質土の場	水試験,乱さない試料の	質土については室内透
水の確認とクイックサ	合 , 1.2~2.4mの深さまで。	採取,地下水位と水頭の	水試験を行う場合もあ
ンド及びヒービン	根切り底が地下水面下にある場合	測定。	る。
グ。	には透水層の位置と厚さを調査する		
土圧の決定。	こと。		
【高盛土】	比較的均一な地層では,法面の水	と同じ	と同じ
地層分布の確認。	平方向の長さの0.50~1.75倍の深さ		
せん断力の決定。	まで。		
圧密特性の判定。	不規則な或いは深い軟弱層がある		
	場合には,固い地層までボーリング		
	をすること。		
【ダム並びに	比較的均一な地層では、アースダ		物理的性質試験,一軸
止水構造物】	ムの外幅の0.50,または小さなコン	ング,標準貫入試験,乱	又は三軸圧縮試験(場
地層分布の確認。	クリートダムの高さの1.50倍の深さ	さない試料の採取,透水	合によっては q c テス
支持力と沈下の判定	•	試験又は揚水試験。	ト),圧密試験,透水
透水性の確認。	堅硬で不透水性の層が以下連続し		試験。
	ているとわかっている場合には,こ		
	の層の中へ3~6mボーリングして		
	停止する。		
【道路等】	切土部では舗装の表面から2mの	ボーリング , サウンディ	物理的性質試験,一軸
地層分布の確認。	深さまでオーガボーリングをする。	ング,標準貫入試験,乱	又は三軸圧縮試験(場
CBR,K値の判定。	また,低い盛土では元の地盤面下	さない試料の採取,CB	合によっては q c テス
せん断力の判定。	1.8mまで。	R試験及び載荷試験。	ト), 圧密試験, CB
圧密沈下の判定。	高盛土、深い切土では上記の注意		R試験。
水位の確認。	と同じ。		

1-3 地質調査相互関連図

第2章 地質調査運用

第1節 機械ボーリング

1-1 ボーリング

1-1-1 ボーリング設備概念図

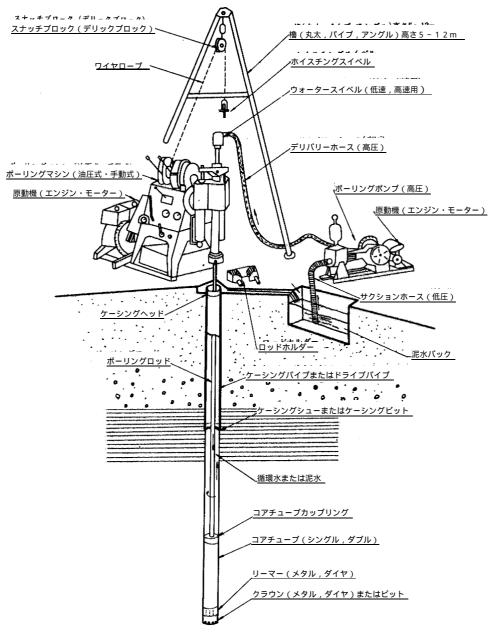
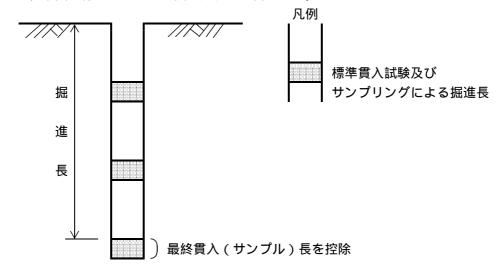



図 2 - 1 - 1 設備概念図

1-1-2 機械ポーリングの設計長

(1) 地質調査における掘進長の取扱いについて

ボーリング掘進延長には、標準貫入試験及びサンプリング等の延長も含むが、最終貫入(サンプル) 長については、下図の様にボーリング掘進延長には含めない。

1 - 1 - 3 **ボーリング孔径の適用** (1) 各種試験及び計測に必要なボーリング孔径は下記を標準とする。

区分	試 験 ・ 計 測 名	必要孔径(mm)	区分	試 験 ・ 計 測 名	必要孔径(mm)
	固定ピストン式 シンウォールサンプリング	86 ~	岩	岩盤透水試験	66 ~
		00 **	盤	孔内微流速測定	66 ~
土	デニソンサンプリング (ロータリー式 二重管サンプリング)	116~	調	湧水圧測定	66 ~
		116~	查	グラウト試験	66 ~
	ロータリー式 三重管サンプリング	110		ボアホールスキャナー	66 ~
質	標準貫入試験	66 ~	地	パイプ歪計	66 ~
	孔内水平載荷試験 (プレシオメーター)	66 ~	す	孔内傾斜計	86 ~
	,	00	ベ	多層移動量計	66 ~
試	" (L.L.T)	86	IJ	水 位 計	66 ~
	" (K.K.T)	66	調	地下水検層	66 ~
	揚水試験	250 ~	查	簡易揚水試験	66 ~
験	現場透水試験	86 ~		速 度 検 層	66 ~
	間隙水圧測定	86 ~		P S 検 層	66 ~
	地下水孔内流向・流速測定 (LD型)	116 ~	探	反射検層	66 ~
	" (SWM - K Z型)	150 ~	査	密度検層	66 ~
	地中ガス調査	86 ~	· +÷	電気検層	66 ~
			検展	温度検層	66 ~
			層	キャリパー検層	66 ~
				常時微動測定	101 ~

1-1-4 給水(揚水)ポンプ運転費

給水ポンプ運転単価表(例)

(1日当り)

名		称	規	格	単位	数量	適		用
燃	料	費			L		L/	h x h	=
機材	機械損料		小型渦巻	きポンプ	日	1	揚程	m	

- 注) 1. 運転労務はボーリング機械運転費に含まれるものとする。
 - 2.ポンプが複数必要な場合は必要台数を計上する。
 - 3. 給水ポンプは揚程に見合った規格を選定する。

1-1-5 その他

- (1) 岩判定の判断基準
 - 一般的岩質区分(花崗岩)で岩判定すると

A , B , C H 硬岩 C M 軟岩 C L 軟岩 D 土砂

のように分類できる。

- (2) ボーリング(試錐)等においては、原則として既存資料の収集・現地調査、資料整理とりまとめ断面 図等の作成、総合解析とりまとめ、協議打合せを計上するものとする。
- (3) 室内土質試験等は「物価資料等」を参考にして積算するものとし,直接調査費に計上する。

1-2 運搬費の積算

項 目	名 称	規 格	単位	備考
資機材運搬	トラック運転経費	h/日、2~4t (クレーン付)	П	下記参照
人員輸送	ライトバン運転経費	h/日、1.5L	日	参考資料、総則1-3
現場内小運搬	現場内小運搬	必要な運搬方法を選択	t	基準書、第4節

(1) 運搬費のうち資機材の運搬は,資機材運搬積算上の基地から現地までの搬入,搬出とする。 (ここでいう積算上の基地とは、原則として現地に最も近い本支店が所在する市役所等とする) 運搬機種は2t、3t、4tの2.9t吊りクレーン付きトラックによる運搬を標準(ボーリング用資材1編成分)とするが、これにより難い場合は別途考慮する。

3t車(2.9t吊リクレーン付き)の場合

(1日当たり)

			(1111111			
I	項目	名称	規格	単位	員数	適用
	材料費	軽 油		L		7.1(L/h) × 2U(h)
	労務費	一般運転手		人		1/T(人/h)×2U(h)
	機械経費	トラック損料	t(クレーン付)	時間	2U	運転時間当たり損料
		"	"	日	1	供用日当たり損料

- 注1. Uは、片道所要時間であり1時間単位とする。
 - 2.Tは運転日当たり運転時間であり5.7(人/h)を標準とする。
 - 3.1/Tの数値は小数点以下第2位(第3位四捨五入)とする。
- (2) 土質と岩盤ボーリングが混在する場合,ボーリング,標準貫入試験等は,地質区分に応じた機種,規格で積算するが,運搬費については,規格の大きい1機種を対象とする。
- (3) 機材及び足場材料等の標準重量
 - 1) ボーリング機材(平坦地足場を含む)

X	分	規	格	標準重量
土質ボー	リング	ボーリングマシーン	3.7kw級	1,300kg
岩盤ボー	リング	ボーリングマシーン	5.5kw級	1,900kg

- 注) 1. 本重量には,ボーリングマシーン,ボーリングポンプ,ボーリング櫓,ロッド,コア チューブ,ケーシング,セメント,ベントナイト,標本箱,各種工具等を含む。
 - 2. 岩盤ボーリングで深度が100mを越える場合は別途とする。
- 2) 足場材料等(仮囲い以外は平坦地足場の重量分を差し引いた重量)

X	分	標準重量
湿地	足場	950kg
傾 斜 地	足場	900kg
水 上 (水深 1 m	足 場 未満)	1,500kg
水上足場(以上 3 m	水深 1 m 未満)	1,950kg
環境保全(仮囲い)	250kg

- 注)1.傾斜地足場の重量は,垂直ボーリングで深度80m以下,地形傾斜15°~30°を標準としており,これ以外のケースは別途とする。
 - 2. モノレール運搬,索道運搬を行う場合の機材は別途とする。
 - 3.配管給水を行う場合の機材は別途とする。

第2節 サンプリング

2-1 サンプリングの選定方法

サンプリングの選定方法は下表による。

名 称	採 取 目 的	適応土質	必 要 な 孔 径
シンウォール サンプリング	軟弱な粘性土の乱さない 試料の採取	軟弱な粘性土 0 N値 4	86mm以上
デニソン サンプリング	硬質粘性土の採取	硬質な粘性土 4 < N値	116mm以上
トリプル サンプリング	硬質粘性土の採取	デニソンサンブリングが不可能な場合	116mm以上
	砂質土の採取	砂質土	

第3節 サウンディング及び原位置試験

3 - 1 現場透水試験

現場透水試験の適用は下表を標準とする。

なお,礫層のように非常に透水性の高い土層では,間隙水圧測定(水頭測定)によることを標準とする。

	名	秋	Ī	地"	下水丬	犬態	土	質	状	態	適	用
オ	— 7	ガ ー	法	佃	由	水	砂質土 ケーシン	グ無し ⁻	で孔壁は自	立	試験深度も地下 浅い場合	水位も比較的
ケ	ーシ	ンク	が法	自	由	水	砂質土 ケーシン	グ無し ⁻	では孔壁に	は崩壊	"	
	重	管	法	被	圧	水	砂質土 明確な不	透水層	が存在する	5	地下水位が深し	1場合
	重	管	法	被	圧	水	砂質土 明確な不	透水層	が存在した	い場合	"	
注	7.	K	法	地"	下水な	よし	砂質土				試験深度までは 場合	こ地下水がない

注)1.本表は標準的な試験方法であり、土質条件、試験深度等によりこれによりがたい場合は別途考慮する。

第4節 足場仮設

4-1 足場等の概念図

(1) 平坦地足場

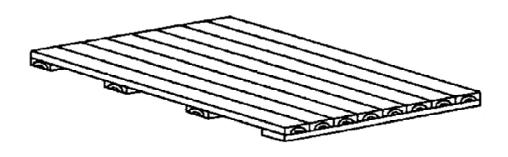


図2-4-1 平坦地足場概念図

(2) 湿地足場

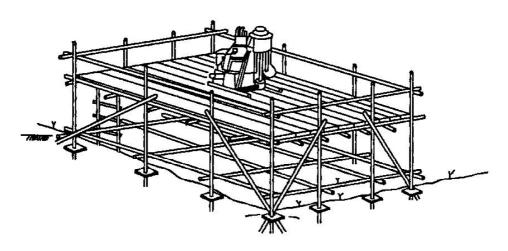


図2-4-2 湿地足場概念図

(3) 傾斜地足場

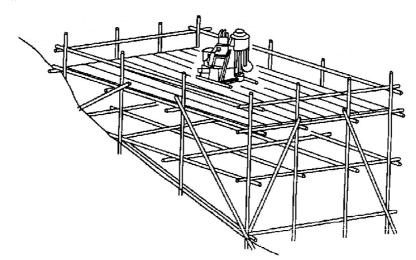


図2-4-3 傾斜地足場概念図

(4) 水上足場(水深1m未満)

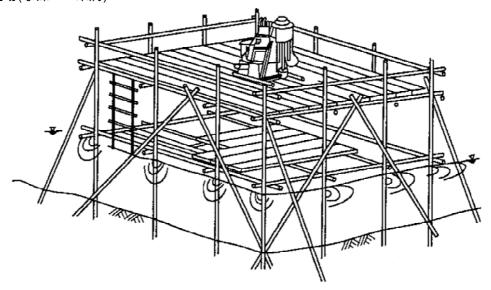


図2-4-4 水上足場概念図

(5) 水上地足場(水深1m以上3m未満)

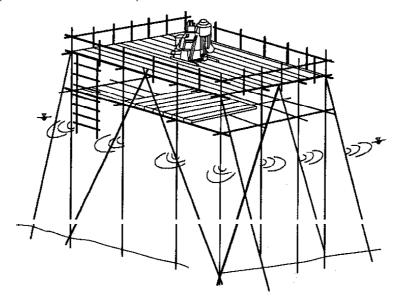


図2-4-5 水上地足場概念図

第5節 その他の間接調査費

5-1 環境保全(仮囲い)の概念図

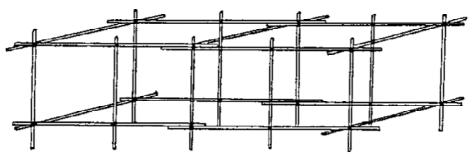


図2-5-1 環境保全概念図

第6節 地すべり調査

- 6 1 移動変形調査における設置・撤去
- 6-1-1 「パイプ式歪計」の積算例
- (1) 積算条件
 - 1) 深度(D)=10m
- (2) 積算例
 - 1) パイプ式歪計の数量

2) リード線の数量

1 方向 2 ゲージの場合

L (1孔当りリード線延長) = D (深度m) ÷ 2 (D (深度m) + 4)

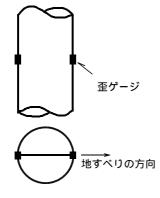
 $L = 10m \div 2 \times (10m + 4)$

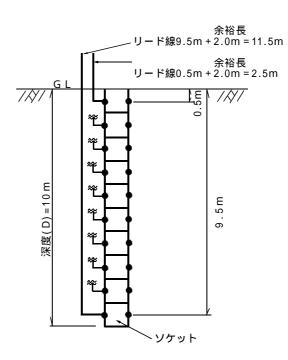
= 70.0 m

2 方向 4 ゲージの場合

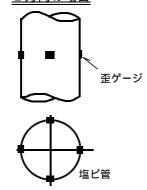
L (1孔当りリード線延長) = [D (深度m) ÷ 2 (D (深度m) + 4)] x 2

 $L = [10m \div 2 \times (10m + 4)] \times 2$


= 140.0m


3) ソケットの数量

M (個数) = D (深度m)


M = 10個

<u>1方向の場合</u>

2方向の場合

パイプ式歪計の模式図

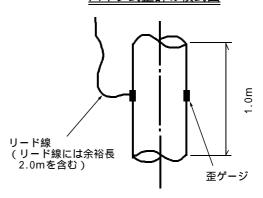


図 2 - 6 - 1 パイプ歪計設置図

6-1-2 「挿入式孔内傾斜計」の積算例

- (1) 積算条件
 - 1) 深度(D)=10m
- (2) 積算例

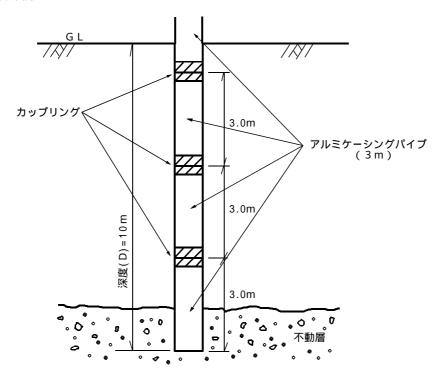


図2-6-2 挿入式孔内傾斜計設置図

1) アルミケーシングの数量

M (本数) = D (深度m) ÷ 3 + 1 (端数切り捨て)
M = 10m ÷ 3 + 1 (端数切り捨て)
= 4 本

2) アルミカップリングの数量

N (個数) = M (アルミケーシング本数) - 1 N = 4 本 - 1

= 3個

6-2 移動変形調査における観測

6 - 2 - 1 積算にあたっての注意事項

(1) 「伸縮計」及び「傾斜計」による調査

当該調査は観測期間中(設置から撤去まで)を通じて各観測地点毎に計測機器を設置し,観測を行う ものである。よって計測機器は観測期間中各孔毎に1基ずつ必要となる。

(2) 「パイプ式歪計」及び「挿入式孔内傾斜計」による調査

当該調査は計測時のみ現地に計測機器を設置し、観測を行うものである。よって計測機器は計測時の み必要となる。

6-2-2 積算例

(1) 積算条件

1) 観測孔数:4孔
 2) 観測周期:10日

3) 観測回数:13回

4) 調査期間:観測周期(測定間隔日数)×観測回数=10日×13回=130日

機器設置後、10日後に測定を開始する場合

(2) 「伸縮計」及び「傾斜計」の観測における機械損料の計算例

1基1回当りの機械損料(円/基・回)=観測周期(測定間隔日数)(日)×日当り損料(円/基・日)従って、観測(4基・13回当り)で必要な機械損料は,

機械損料(4基・13回当り)=1基1回当りの機械損料(円/基・回)×52(基・回)

(3) 「パイプ式歪計」及び「挿入式孔内傾斜計」の観測における機械損料の計算例 1孔1回当りの機械損料(円/孔・日)=標準歩掛×日当り損料(円/孔・回) 従って、観測(4孔・13回当り)で必要な機械損料は,

機械損料(4孔・13回当り)=1孔1回当り機械損料(円/孔・回)×52(孔・回)

6 - 3 模式図

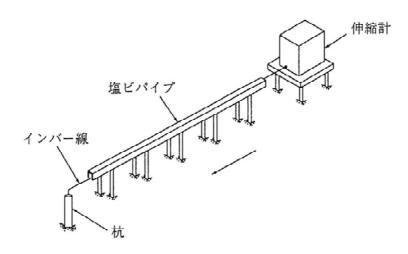


図 2 - 6 - 3 伸縮計模式図

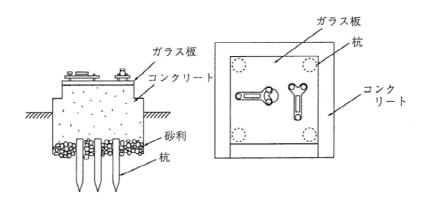


図2-6-4 傾斜計模式図