スマートシティの実施に向けた検討調査 (その12)

調査報告書

令和3年3月

KUREスマートシティコンソーシアム

スマートシティの実施に向けた検討調査(その12) 調査報告書

≪ 目 次 ≫

1.	基本事項 · · · · · · · · · · · · · · · · · · ·	1
2.	対象区域・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
3.	区域の現状と課題・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
3	3.2 平成30年7月豪雨災害の教訓······ 3.3 緊急性を増している課題 ······	· 7
3	3.4 まちづくりのリーディングプロジェクト・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
4.	取組の方向性の検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 15
4	4.1 新技術導入による都市課題解消の効果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	20 21 23
5.	····································	
5	5.1 取組内容に対するKPIの候補選定····· 5.2 取組内容に対応するKPIの設定·····	41
6.	先端技術導入に向けた検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	. 44
6	6.1 スマートシティくれの全体事業概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	46 55 61
7.	スマートシティ実装に向けたロードマップ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 72
8.	構成員の役割分担・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 73
	持続可能な取組とするための検討 · · · · · · · · · · · · · · · · · · ·	74
	データ利活用に関する検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
1	0.1 活用を想定するデータ ····································	80
11.	横展開に向けた検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 81
参	考資料 R2 年度に実施した実証実験の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· 83

巻末資料

巻末資料 1: KURE スマートシティ実行計画【要約版】 巻末資料 2: KURE スマートシティ実行計画【概要版】

巻末資料3:KURE スマートシティ実行計画

1. 基本事項

事業の名称	「スマートシティ くれ」の推進による 都市のリ・デザインとブランド力の向上		
事業主体の名称	KUREスマートシティコンソーシアム		
	地方公共団体代表: 呉市		
事業主体の構成員	民間事業者等代表:復建調査設計株式会社		
争未土体の構成貝	その他構成員:広島大学		
	呉工業高等専門学校		
実行計画の対象期間	令和3年~令和29年		

2. 対象区域

(1) 対象区域

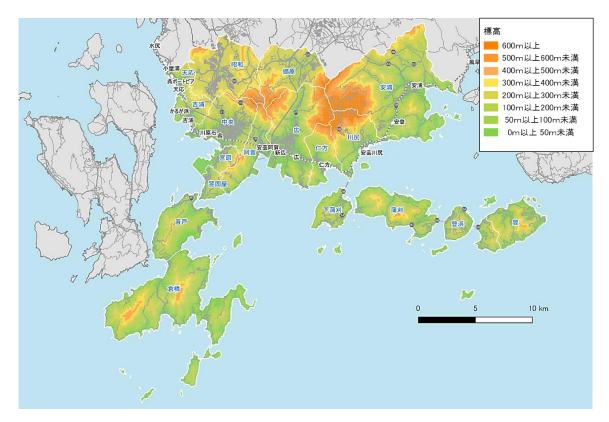
広島県呉市【先行エリア: 呉駅周辺地域】

(2) 対象区域の概況

本市は、瀬戸内海のほぼ中央部、広島県の南西部に位置し、瀬戸内海に面する陸地部と倉 橋島や安芸灘諸島などの島しょ部で構成されている。

市域面積は352.81 kmで、陸地部と島しょ部(倉橋島、鹿島、下蒲刈島、上蒲刈島、豊島及び大崎下島)は、架橋により陸続きとなっており、東西方向に約38.1km、南北方向に約33.1kmと広がる市域は、瀬戸内海で最も長い約300kmの海岸線を有している。

呉市は広島市に近接し、当圏域における連携中枢都市機能の一部を担っている。


地形的には、陸地部の北部に灰ヶ峰、野呂山を始め、標高 300mから 800m前後の山が連なり、市域全体を通じて平たん地が少なく、市街地や集落が分断された形となっている。

特に、呉駅周辺の中心市街地を取り囲むように、狭隘道路が複雑に入り組んだ斜面市街地が形成されている。

面積:352.81 kd 人口:217,289 人(R3.1 末)

■ 呉市位置図

■ 呉市の地勢

3. 区域の現状と課題

3.1 呉市の現状・課題

第5次呉市長期総合計画などを基に、呉市の現状・課題を整理した。

(1) 子育て・教育分野

◎ 少子化への対応

子育てや教育にかかる経済的な負担や子育てへの不安, 仕事との両立の悩みなど様々な 要因が, 若い世代の結婚から妊娠, 出産, 子育てまでの希望の実現を難しくしている。若 い世代が安心して子どもを産み育てることができる, まちづくりが必要となっている。

◎ ICT教育の推進

グローバル化や情報化など、社会が急激に変化する中で、変化に向き合い、新たな価値を創造する力など、子どもたちの未来につながる資質や能力を伸ばす教育が求められている。また、いじめや不登校への対応、特別支援教育の充実、ICTを活用した教育の推進などが必要となっている。

(2) 福祉保健分野

◎ 高齢化への対応

人口のボリュームゾーンが高齢側へシフトしており、全国に先駆けて高齢化が進行し、 高齢化率30%台半ばの高い水準となっている。このため、必要に応じて医療や介護サービ スなどが提供され、住み慣れた地域で安心して生活できるまちづくりの実現が求められて いる。

◎ 健康づくりの推進

市民の健康づくりや高齢者のフレイル予防, 呉市が全国のモデルとなった, 健診・医療情報等の分析に基づき, 効果的な保健事業を提供するデータヘルスなどの推進などにより, 市民の健康寿命の延伸を図っていくことが求められている。

(3) 市民生活·防災分野

◎ 市民主体のまちづくり

地域の課題解決に対する市民ニーズは多様化し、行政だけでの対応が難しくなっている。また、人口減少や高齢化などに伴い、まちづくり活動の担い手や参加者が減少している。このような中、多様な人々による協働により、自主的で自立したまちづくりを実現するとともに、全ての市民が安心して暮らし、活躍することができる地域社会の形成が求められている。

◎ 防災機能の強化

平成30年7月豪雨災害を教訓として、当該災害で多くの市民が避難指示後も避難行動を起こさなかったことへの取組や気象情報・避難情報の周知方法、避難環境の改善などについての検討が必要となっている。

(4) 文化・スポーツ分野

◎ 伝統文化の継承

文化芸術に参加(鑑賞)する機会の拡充や文化財の適正な保存と活用、祭りなどの地域 の伝統文化の継承が課題となっている。

◎ スポーツ活動ニーズの対応

子どもから高齢者まで、それぞれのライフステージに応じたスポーツ活動のニーズが多様化している。このような中、指導者の高齢化やその後継者不足、トップアスリートの育成などが課題となっている。

(5) 産業分野

◎ 経営・生産基盤の強化

市内中小企業・小規模企業では、人口減少や海外との競争が激化する中、人材確保も難しい状況が続いており、経営基盤の強化や事業承継が課題となっている。農水産業では、 生産者等の減少などによる生産基盤の脆弱化や価格の低迷などによる収益力の低下などが 課題となっている。

◎ 観光消費額の拡大

市内の観光振興に向け、滞在型や繰り返し訪れる観光客、一人当たりの消費額を増加させることなどが課題となっている。

(6) 都市基盤分野

◎ 公共交通の維持

人口が減少する中で,市街地においても人口密度の低下が懸念されている。また,高齢 化の進行により,交通弱者が増加しているものの,公共交通利用者は総体的に減少してお り,生活交通を始めとする公共交通を適切に維持していく必要がある。

◎ 公共インフラの適切な維持管理

平成30年7月豪雨災害では、主要道路や公共交通機関が被害を受け、市民生活や経済活動に大きな影響を及ぼした。この教訓を踏まえ、道路や橋梁など、老朽化する公共インフラの適切な維持管理の推進が必要となっている。

(7) 環境分野

◎ 温室効果ガスの削減

温室効果ガス排出量は、平成25年度から平成28年度で0.1%削減に留まっており、令和12年度までの中期削減目標である"26%"を大きく下回っている。このため、市民や企業などが一体となった温室効果ガスの排出削減に向けた取組の推進や環境に配慮した行動ができる人材を育成する環境教育・環境学習の充実等が必要となっている。

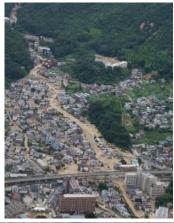
◎ ごみの減量化推進

市内のごみの減量化については、指定ごみ袋制度(ごみの有料化)導入以降は減少傾向 にあったが、近年、おおむね横ばい状況が続いている。今後についても、大きな効果が期 待できないことから新たな施策の展開が必要となっている。

(8) 行政経営分野

◎ 住民サービスの維持向上

人口減少や少子高齢化が進む中で、新たな行政需要に的確に対応していくことが求められている。このため、健全な財政運営や職員数の適正化、公共施設等の更新、統廃合、長寿命化などを進める必要がある。


◎ 高速通信網の整備

I C T が急速に進歩する中、高速通信網の未整備地域があり、市民生活や企業活動等に 影響が出ている。

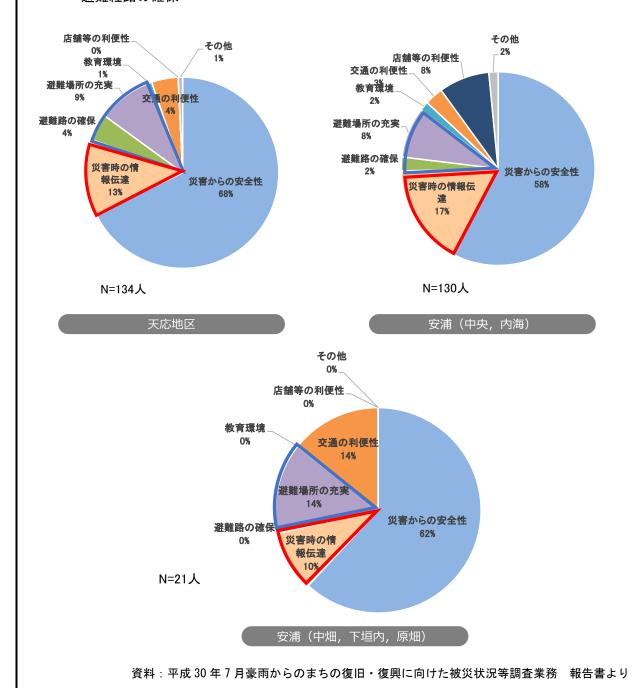
3.2 平成30年7月豪雨災害の教訓

呉市では、平成30年7月豪雨災害により、人的被害や家屋の倒壊、断水や浸水、土砂の流 出、交通ネットワークの遮断など甚大な被害を受けた。

■ 呉市の被災状況

特に, 土砂災害により, 市内幹線道路が通行止めとなり, 市内各所で深刻な渋滞が発生した。

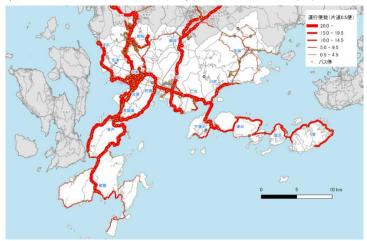
■ 被災した国道31号及びJR呉線


このような中、JR代行バスが緊急通行する災害時BRTが運行され、市民や通勤者の足を確保し、公共交通の必要性が再認識された。

■ 災害時BRTにより呉I.Cから広島呉道路に進入するバス

■トピック: 平成30年7月の豪雨災害に関する住民アンケート調査結果

- 〇平成30年7月の豪雨災害後に実施した住民アンケート調査(天応・安浦地区)では、今後の 災害対策への要望として、地域住民からは、次のような取組を求める意見が多く、早急な対 応が求められている。
 - ・災害時の情報伝達機能の充実
 - 避難場所の充実
 - 避難経路の確保


3.3 緊急性を増している課題 ~公共交通の維持~

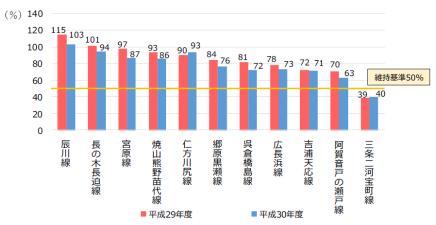
公共交通利用者の減少と高齢化の進展

市民生活に身近な公共交通(路線バス)の路線維持が難しい状況です。一方、運転 免許返納者が増加しており、市民の移動手段を確保するためには、公共交通の維持は 喫緊の課題となっている。

市内の路線バスは、広島電鉄株式会社、中国ジェイアールバス株式会社、瀬戸内産交株式 会社、さんようバス株式会社により運行されている。(令和元年10月時点)

バス路線には, 呉市と広島市又は東広島市, 熊野町を結ぶ広域系統と市内完結系統がある。

資料:「呉市地域公共交通網形成計画 R2.9 呉市」より


■ 呉市の路線バスの運行便数

市域の大半を担う広島電鉄株式会社の路線バス乗車人員は、減少率は低くなったものの、依然として減少傾向にあり、平成30年度においては、平成30年7月豪雨災害の影響により大幅に利用者が減少している。このため、呉市内において公共交通ネットワークの柱となる市内路線バスは、1路線を除きすべて赤字経営となっており、特に、赤字路線のうち1路線は、路線維持基準を下回る収支状況となっており、非常に厳しい経営状況にある。

資料:「呉市地域公共交通網形成計画 R2.9 呉市」より

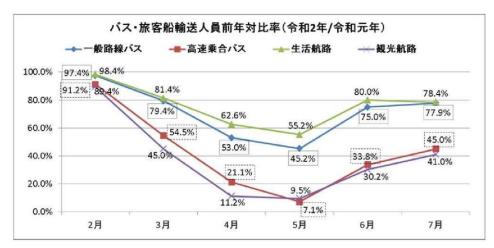
■ 広島電鉄が運行する市内バス路線の年間乗車人員の推移

資料:「呉市地域公共交通網形成計画 R2.9 呉市」より

■ 広島電鉄が運行する路線バスの経常収支率(平成 29 年度,平成 30 年度)

また, 呉市の高齢者 (65 歳以上) の運転免許保有割合は増加傾向にあるが, 一方で, 運転 免許返納者も増加している。

資料:「呉市地域公共交通網形成計画 R2.9 呉市」より ※運転免許の保有者数は各年12月末時点,65歳以上人口は各年9月末時点 ■ 運転免許の保有者数の推移



資料:「呉市地域公共交通網形成計画 R2.9 呉市」より

■ 運転免許の返納者数の推移

COVID-19 の影響により深刻度を増す公共交通の経営状況

新型コロナウイルス発生の影響により、人の移動量が激減し、交通事業者の経営状況は厳しさを増しています。次世代を見据えた公共交通ネットワークの再構築を加速させる必要があります。

資料:広島県資料

■ 公共交通におけるコロナ禍の影響

3.4 まちづくりのリーディングプロジェクト ~ 呉駅周辺地域総合開発 ~

現在, 呉市では, 「スマートシティ くれ」の実現に向けた, まちづくりのリーディングプロジェクトとして, 呉駅周辺地域において, 次世代モビリティやMaaSなどの先端技術の導入を見据えながら, 鉄道やバス・航路の総合交通拠点となる駅前広場の再整備を中心とする総合開発を進めている。

呉駅周辺地域総合開発基本計画【令和2年4月】抜粋

■計画の目標

呉駅周辺地域全体を総合交通拠点として捉え、市全体の交通まちづくりの起点となる、次世代モビリティにも対応した機能整備を推進するとともに、官民連携の手法や積極的な制度活用等により、居住機能や生活に必要な都市機能を誘導し、市内で最も人口と都市機能が高度に集積した、Society5.0 の実現に向けた先駆的サービスが展開される次世代のまちなか居住エリアの創出を目指します。

■基本理念

まちの魅力とひとの交流をつなぎ、広げ、新たな価値を創造する

「交通まちづくりとスマートシティの発信拠点の形成」

■5つのビジョンと取組内容

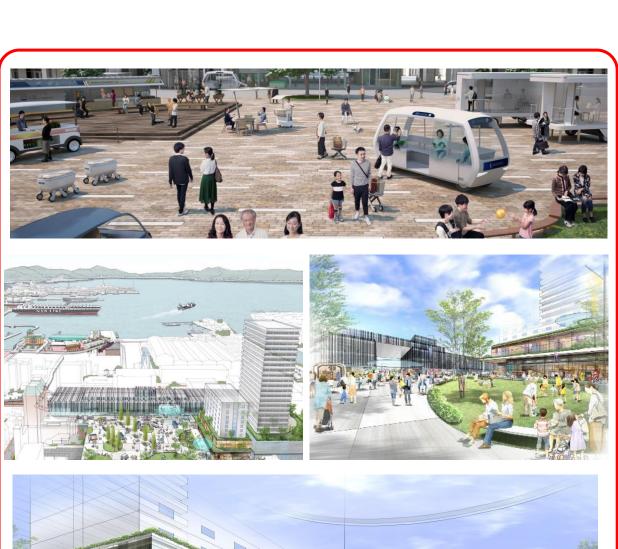
ビジョン1 交通まちづくりの起点となる"次世代型 "総合交通拠点の形成

- ①バス・タクシー・自家用車と歩行者を分離した利用しやすい駅前広場の整備
- ②バス・鉄道・船など交通モード間の接続強化
- ③新しい交通システムの積極的な導入
- ④呉駅周辺地域を起点とした広域的な回遊ルートの形成

ビジョン2 市民と来訪者が憩い、賑わい、快適に移動できる駅前空間の創出

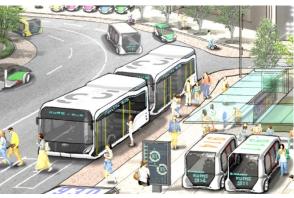
- ①駅・交通ターミナルと一体となった2階レベルの歩行空間
- ②広場空間を活用した賑わい創出
- ③市中心部の回遊促進
- ④次世代モビリティの乗り入れ等広場空間の先進的な活用

ビジョン3 災害時にも頼りになる防災対応型交通拠点の形成


- ①災害時に一時避難場所等として機能するデッキ広場
- ②呉駅周辺地域を起点とした災害時の交通ネットワークの確保
- ③官民連携による防災拠点性の向上
- ④次世代モビリティによる非常時電力供給

ビジョン4 歩きたくなる・住みたくなる「心地よく過ごせるまちなか」の形成

- ①駅前の賑わいを創出する複合施設の整備
- ②複合施設への商業・賑わい機能、居住機能等の導入
- ③複合施設へのパブリックスペースの設置
- ④橋上駅を核とした周辺開発の誘導・推進


ビジョン5 「公・民・学」一体で課題を解決し続けるまちづくり

- ①アーバンデザインセンターの設立
- ②市民参加による継続的なまちづくりの推進

4. 取組の方向性の検討

4.1 新技術導入による都市課題解消の効果

「スマートシティ官民連携プラットフォーム」などを基に新技術の動向を整理すると,以下の各分野で新技術の開発が進んでいる。

新技術は様々な分類の技術が複合されていることから,分類-新技術を画一的に分類する ことは困難であるため,概略的に以下のように大別した。

■ 新技術の分類

/ Net	-t	- 1-1-41-
分類	煮	行技術
通信ネットワークとセンシング技術	• 人流観測技術	・センシング技術
	• 遠隔授業技術	・モニタリング技術
	・先端ロボット技術	・先端モビリティ技術
	・ドローン技術	• 自動運転技術
分析・予測技術	• 顔認証技術	・A I (人口知能)
	・先端モビリティ技術	・自動運転技術
データプラットフォーム	・A I (人口知能)	マッチング技術
データの活用 (可視化等)	・VR・AR・MR 技術	・ドローン技術
	・防災 MaaS	・燃料電池車両・EV 車
	両	

呉市の諸課題に対して,導入が考えられる新技術等を選定し,新技術等を導入した時の効果(導入のねらい)を整理した。

■ 新技術導入による呉市の課題解消のねらい

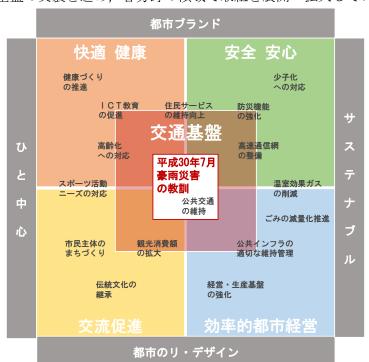
		出無代十二	が十十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	21、11、11、11、11、11、11、11、11、11、11、11、11、1
		お中の味噌	4人9の利权制	が技術 争入り 効米 (よりい)
子育て・	少子化への	●安心して子供を産み育てられる就業環境創	◆ 顔認証技術	○子育て世代の経済的な負担や仕事との両立の悩
44//图	t i	11		みを解消するため、テレワーク環境の充実等によ
後 同 万 野	غ آخ ×	● 育児への精神的負担の解消	◆ 人派 紀測技術	り働き方の多様化を実現。
		● 安全を守る見守り体制の強化	◆ AI(人工知能)	○子育て情報サイト等,子育て相談や診療施設予
			◆ センシング 技術	約,保育園・学校情報等子育てに必要な各種情報
				発信サービスを提供。
				○子供たちが安全に安心して暮らすことができる,
				GPSやカメラ等を活用した見守りサービスの
				提供。
	ICT 教育の	●グルーバル化・情報化への対応	◆ 遠隔授業技術	○世界中と交流するグローバル授業を実現。遠隔授
	#,#	光超 9 米 华什 叶 9 ~ 季 7 广 河 十 华 4	◆ トーイ: 、: , , , , , , , , , , , , , , , , , ,	業等により、居住地等に関係なく、均等に教育を
	出	■ 教目を文1つ徳法の3項合在の群消	◆トーダンノン女意	受けられる機会を確保。
		●GIGAスクール構想の実現	◆ AI (人工知能)	○個々の習熟度や環境等パーソナルデータに基づ
				く最適な学習機会を提供。
福祉保健	高齢化への	医療・介護サービスの地域格差の解消	◆ 遠隔医療技術	○電子カルテの共有,遠隔医療,遠隔投薬指導等に
) H4	t 7	● 医麻蚊头 人类仓村数址 电补充存出数法		より、居住地等に関係なく、移動することなく、
が世	خ <u>ا</u> لد ا	■ 医漿叉診・17 護の高断有・多族の其担軽減	◆ お指ロボジャ	均等な医療サービスを提供。
		●安全を守る見守り体制の強化	◆ モニタリング技術	○医療や介護分野で不足する人材を補う, AI 機能を
			◆ AI (人工知能)	備えた先端ロボットサービスの提供。
				○高齢者が安全に安心して暮らすことができる, G
				P S やカメラ等を活用した見守リサービスの提
				供。
	健康づくり	●データヘルスの継続的推進	◆ モニタリング技術	○パーソナルデータモニタリングにより, オーダー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	きませ	●□慰光の発出類合の打木	▲ ΔI (人工和能)	メイト型の健康管理・指導サーヒスを提供。
	1 1	くなべくなべているロー国に		○ 高齢者の外出機会を促す, ファースト/ラストワ
			◆ 先端モビリティ技術	ンマイル移動サービスの提供。

Ⅰ 新技術導入による呉市の課題解消のねらい

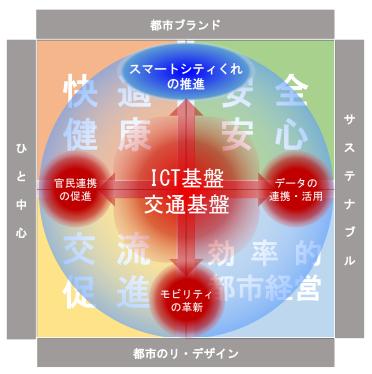
		呉市の課題	導入する新技術	新技術導入の効果(ねらい)
市民生活・防災分野	市民主体のまたづくり	● 地域住民による主体的なまちづくり推進	◆ センシング技術◆ AI (人工知能)	〇3Dマップ及び各種都市データの融合・分析によるスマートプランニングの実現。
	防災機能の強化	地域の防災力・消防力の強化災害情報・避難情報のスムーズな伝達	センシング技術AI (人工知能)VR・AR・MR 技術ドローン技術株端ロボット	○災害情報提供サービス,最適な避難誘導サービスの提供。避難所情報の発信。感染症等の緊急情報の発信。 の発信。 ○3 Dマップを活用した災害予測の実現。VR技術を用いた防災訓練機会の提供や災害ハザードマップの見える化。
			◆ 防災MaaS	数助・消化活動等の迅速化、効率化。
文化・スポーツ分野	伝統文化の継承	芸術文化に触れる機会の拡充地域文化の普及,情報発信の拡充伝統文化の周知・継承	◆ VR・AR・MR 技術	○VR, AR, MRによる地域の伝統・文化情報発信サービス, スポーツ観戦サービス観光等疑似体験サービスの提供。
	スポーツ活 動ニーズの 対応	●スポーツへの参加機会の拡充●指導者の高齢化,後継者不足への対応●トップアスリートの育成		○指導者不足を補う、VR、AR、MRによる指導サービスの提供。また、トップアスリートによる指導機会の提供。

▮ 新技術導入による呉市の課題解消のねらい

		呉市の課題	導入する新技術	新技術導入の効果(ねらい)
				.
産業分野	経営・生産	●経営基盤の強化・事業継承	◆ モニタリング技術	○情報分析による镭かる康楽の実現。ロックナータ・1/1 ニナス暗點4/0 目さスケー
	基盤の強化	●付加価値の高い農水産業の育成	◆ センシング技術	ことの思想が見る。こことの問題がある。こことのできる。こことの言語を言うない。
		●新しい生活様式に対応した働き方の推進	◆ AI (人工知能)	
			◆ 自動運転技術	○ 自動運転車両, ドローン, センシング技術, モニタコンが井然の道 3 1- トス 黒水 帝 業 6 作業 4 柱
			◆ ドローン技術	インノンズ門の中へにおる成分は米の「木氏四の軽減と効率化。
			◆ 観光MaaS	
	観光消費額	●付加価値が高く,質の高いサービスの提供	◆ モニタリング技術	○移動と一体となったシームレスな検索, 予約, 決 ※サービュの担併
	の拡大	●宿泊客・リピーターの確保。回遊性の向上	◆ センシング技術	
			◆ 顔認証技術	○センシング技術・カメラ等による,人流・回遊データの収集・分析サービスの提供。
			◆ 人流観測技術	
			◆ AI (人工知能)	
			◆ 自動運転技術	○ ビッグデータ分析による観光サービスの最適化。 新たなサービスの展開。
			♦ MaaS	
都市基盤	公共交通の	持続可能な公共交通の確立	◆ 自動運転技術	○ ドライバー不足を解消し、持続可能な公共交通を 降促する白動電転車品の道 3
分野	維持	● ドライバー不足への対応	◆ 先端モビリティ	#ボバッコガニガーにかれて。 ○外出機会の向上、回遊性の向上に寄与する。ファ
		● 交通弱者への支援	♦ MaaS	フンマイルの移動サービスの
	公共インフ	●維持管理作業の効率化	◆ センシング技術	○30マップを用いた,インフラ施設の一元管理による 雑誌管理作業の斡索化の宝祖
	ラの適切な	●スマートプランニングの推進	◆ AI (人工知能)	. P
	維持管理			るびる


■ 新技術導入による呉市の課題解消のねらい

		呉市の課題	導入する新技術	新技術導入の効果(ねらい)
環境分野	温室効果ガスの削減	●温室効果ガス排出量削減	◆ モニタリング技術◆ AI (人工知能)◆ 燃料電池車面・EV 車面	○最適で安定した電力供給に向けた。電力供給・消費モニタリング・分析サービスの提供。 ○燃料電池車両・EV車両の導入による低炭素化の実現と災害時における移動可能な電力供給基地
	ごみの減量 化推進	ごみの減量化ゴミ収集の最適化・効率化	◆ モニタリング技術 ◆ AI (人工知能)	の確保。 ○食品ロスの削減に向けた, ごみ排出量のモニタリングと分析サービスの提供。 ○ゴ: 排出号のモニタリンが・公析・トター
行政経営分野	住民サービスの維持向	●健全な財政運営●行政サービスの最適化,効率化	マッチング技術◆ AI (人工知能)	● ユニザム単のモーネップ・ブがにする。」これ 集ルートの最適化と回収状況の見える化。 ○ 感染症対策も踏まえた行政事務に関するデジタ ル・オンライン申請サービス。キャッシュレスサービスの提供。
	上 高速通信網 の整備	●民間イノベーションの誘発促進		○ニーズとシーズのマッチングによる新サービス の提供。 ○産・官・学連携による,新たなサービスの展開。

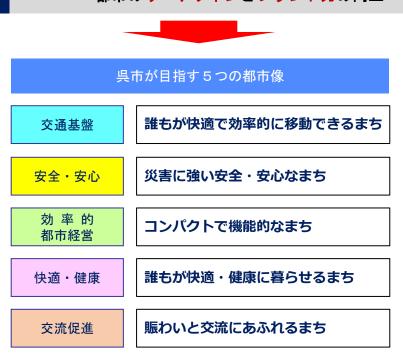

4.2 呉市スマートシティのターゲットとする課題と展開の方向性

呉市の諸課題を分類整理すると、「交通基盤」重複的な課題として把握できる。

そこで、呉市スマートシティは、呉市の諸課題に対して、官民連携により新技術等の導入により課題解決に取組む呉市スマートシティを推進する中で、先行取組として、平成30年7月豪雨災害の教訓を踏まえながら、喫緊かつ重複的な課題である「交通基盤」分野をターゲットにICT基盤の実装を進め、各分野の領域で取組を展開・拡大していくものとする。

■ 課題マトリクス(ターゲットとする課題)

■ 取組の展開・拡大イメージ


4.3 区域の目標(ビジョン)の設定

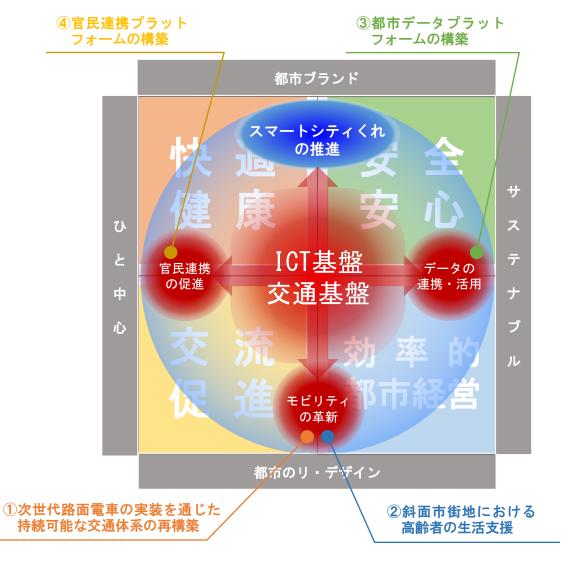
前項までの整理を踏まえ、交通基盤分野を重点ターゲットとし、呉市の各種課題の解消に向けてスマートシティを多分野へ展開・拡大するための「呉市スマートシティの目標(ビジョン)」を、以下のとおり設定する。


- ■呉駅周辺地域を起点に、次世代モビリティ(次世代BRT,自動運転等)やMaaS などの新技術を取り入れながら、次世代モビリティネットワークを形成し、「誰もが 快適で効率的に移動できるまち」の実現を目指します。
- ■次世代モビリティネットワーク及びこれにより得られる移動データ等を軸に、都市 データプラットフォーム等を活用した官民連携の取組により、様々なサービスの効 率化・高質化を図り、「災害に強い安全・安心なまち」、「コンパクトで機能的なまち」、 「誰もが快適・健康に暮らせるまち」、「賑わいと交流にあふれるまち」の「オールく れ」によるスマートシティの実現を目指します。

ビジョン

<mark>呉駅周辺地域</mark>を起点としたスマートシティの推進による 都市のリ・デザインとブランド力の向上

■ 区域のビジョンと目指す5つの都市像


4.4 解決すべき課題と取組の方向性の検討

区域の目標(ビジョン)を具現化するため、呉市の諸課題に対して新技術導入の効果(ねらい)を踏まえて、呉市スマートシティの目指すべき姿と取組の方向性を検討した。

「新技術導入の効果(ねらい)」及び「ターゲットとする課題と展開の方向性」を踏まえて, "目指すべき姿"及び"取組の方向性"として以下を設定する。

■ 目指すべき姿と取組の方向

	・こ女と状態の方向
目指すべき姿	取組の方向性
	①次世代路面電車の実装を通じた持続可能な
次世代モビリティネットワークの形成	交通体系の再構築
	②斜面市街地における高齢者の生活支援
京民連携によるフラー しょう 人の世十	③都市データプラットフォームの構築
官民連携によるスマートシティの拡大	④官民連携プラットフォームの構築

■ 呉市のスマートシティ展開・拡大イメージと取組の方向性の関係図

4.5 官民連携プラットフォーム

(1) 現状と課題

呉市におけるスマートシティの実現に向けた取組を加速するにあたり、現状では次のようなハードルがある。

- 民間事業者が有する先進技術にどのようなものがあるのか, 自治体担当者には専門的な知見がない。
- その先進技術が、課題のどの部分を解決し得るのか、深堀りするための意見交換の場がない。
- 委託発注した後にアンマッチが生じる可能性や、より課題解決に資する良質な提案の 採用機会を失している可能性がある。

呉市のスマートシティの実現に向けては、このようなハードルを越えて行く必要があり、 その解決策の一つとして、『事業化の前段階で、自治体と民間事業者の"ゆるやかな"勉強 会の場が必要』となっている。

このため、今後、呉市においては、以下のような、呉市の課題(ニーズ)と民間事業者の先端技術等(シーズ)とをマッチングする場(勉強会)を設置し、ニーズとシーズが適合するものについては、適宜、社会実装に向けて積極的な取組を展開していく。

※R3年度から、「呉市スマートシティ研究会」として、呉市において事業化

(2) 新技術導入の検討

多種多様な新技術・先進技術が日進月歩で開発されているが, 呉市の多様な課題について, 「新技術導入の効果(ねらい)」を意識しながら, 新技術の導入に取り組む。

■ 新技術導入による呉市の課題解消のねらい(再掲)

	呉市の	課題	導入する新技術	新技術導入の効果(ねらい)
子育て・教育分野	少子化への対応	● 安心して子供を産 み育てられる就業 環境創出 ● 育児への精神的負 担の解消 ● 安全を守る見守り 体制の強化	 顔認証技術 人流観測技術 AI (人工知能) センシンケ 技術	○子育て世代の経済的な負担や仕事との両立の悩みを解消するため、テレワーク環境の充実等により働き方の多様化を実現。 ○子育て情報サイト等、子育て相談や診療施設予約、保育園・学校情報等子育てに必要な各種情報発信サービスを提供。 ○子供たちが安全に安心して暮らすことができる、GPSやカメラ等を活用した見守りサービスの
	ICT 教育の 推進	グルーバル化・情報化への対応教育を受ける機会の地域格差の解消GIGAスクール構想の実現	◆ 遠隔授業技術◆ モニタリング技術◆ AI (人工知能)	提供。 世界中と交流するグローバル授業を実現。遠隔授業等により、居住地等に関係なく、均等に教育を受けられる機会を確保。 個々の習熟度や環境等パーソナルデータに基づく最適な学習機会を提供。

■ 新技術導入による呉市の課題解消のねらい(再掲)

			る六川の旅医所用の格	
福祉保健分野	高齢化への 対応 健康づくり の推進	● 医療・介護サービスの地格 ・ 介護 ・ 京 ・ 京 ・ 京 ・ 京 ・ 京 ・ 京 ・ 京 ・ 京 ・ 京 ・	 ◆ 遠隔医療技術 ◆ 先端ロボット ◆ モニタリング技術 ◆ AI (人工知能) ◆ モニタリング技術 ◆ AI (人工知能) 	○電子カルテの共有、遠隔医療、遠隔投薬指導等により、居住地等に関係なく、移動することなく、均等な医療サービスを提供。 ○医療や介護分野で不足する人材を補う、AI機能を備えた先端ロボットサービスの提供。 ○高齢者が安全に安心して暮らすことができる、GPSやカメラ等を活用した見守りサービスの提供。 ○パーソナルデータモニタリングにより、オーダーメイド型の健康
		の拡大	◆ 先端モビリティ技 術	管理・指導サービスを提供。 ○高齢者の外出機会を促す、ファースト/ラストワンマイル移動サービスの提供。
市民生活·防災	市民主体のまちづくり	● 地域住民による主体的なまちづくり推進	◆ センシング技術◆ AI (人工知能)	○ 3 D マップ及び各種都市データ の融合・分析によるスマートプラ ンニングの実現。
分野	防災機能の強化	地域の防災力・消防力の強化災害情報・避難情報のスムーズな伝達	 センシング技術 AI (人工知能) VR・AR・MR 技術 ドローン技術 先端ロボット 防災MaaS 	○災害情報提供サービス,最適な避難誘導サービスの提供。避難所情報の発信。感染症等の緊急情報の発信。 ○3 Dマップを活用した災害予測の実現。VR技術を用いた防災訓練機会の提供や災害ハザードマップの見える化。 ○消防活動等へのドローン,ロボットの導入による救助・消化活動等の迅速化,効率化。
文化·ス ポーツ 分野	伝統文化の 継承 スポーツ活 動ニーズの 対応	● 芸術文化に触れる機会の拡充 ● 地域発信の拡充 ● 地域発信の拡充 ● 伝統文 ● 伝統文 ● スポーツへの参加機等者のが充 ● 指導者不足のの対応 ・ アスリートの育成	◆ VR・AR・MR 技術	○ VR、AR、MRによる地域の伝統・文化情報発信サービス、スポーツ観戦サービス、観光等疑似体験サービスの提供。 ○ 指導者不足を補う、VR、AR、MRによる指導サービスの提供。また、トップアスリートによる指導機会の提供。

■ 新技術導入による呉市の課題解消のねらい(再掲)

	•	- 初及所等がによ	る呉巾の誄起解消のね	20 (H18)
産業分	経営・生産	● 経営基盤の強化・ 事業継承	◆ モニタリング技術	○情報分析による儲かる農業の実現。ビッグデータ・AIによる暗黙
野	基盤の強化	● 付加価値の高い農 水産業の育成	◆ センシング技術	知の見える化。
		水産業の育成新しい生活様式に	◆ AI (人工知能)	│ │ ○ 自動運転車両, ドローン, センシ
		対応した働き方の	◆ 自動運転技術	ング技術、モニタリング技術の導
		推進	◆ ドローン技術 	入による農水産業の作業負荷の 軽減と効率化。
			◆ 観光MaaS	
	観光消費額	● 付加価値が高く,質の高いサービス	◆ モニタリング技術	○移動と一体となったシームレス な検索,予約,決済サービスの提
	の拡大	の提供	◆ センシング技術	供。
		● 宿泊客・リピータ 一の確保。回遊性	◆ 顔認証技術	○ センシング技術・カメラ等による、人流・回遊データの収集・分
		の向上	◆ 人流観測技術	析サービスの提供。
			◆ AI (人工知能)	
			◆ 自動運転技術	○ ビッグデータ分析による観光サ ービスの最適化。新たなサービス
			♦ MaaS	ーピスの _{取過化。新たなサービス} の展開。
都市基	公共交通の	● 持続可能な公共交	◆ 自動運転技術	○ ドライバー不足を解消し、持続可 **たひせなるも確保する自動事
盤分野	維持	通の確立 ● ドライバー不足へ	◆ 先端モビリティ	能な公共交通を確保する自動運 転車両の導入。
		の対応	♦ MaaS	○ 外出機会の向上,回遊性の向上に
		● 交通弱者への支援		寄与する, ファースト/ラストワンマイルの移動サービスの提供。
	公共インフ	● 維持管理作業の効	◆ センシング技術	○ 3 Dマップを用いた, インフラ施
	ラの適切な	率化 ● スマートプランニ	◆ AI (人工知能)	設の一元管理による,維持管理作業の効率化の実現。
	維持管理	ングの推進		○3Dマップ及び各種都市データ
				の融合・分析によるスマートプラ ンニングの実現。
環境分	温室効果	● 温室効果ガス排出	◆ モニタリング技	○最適で安定した電力供給に向
野	ガスの削	量削減	術	けた。電力供給・消費モニタリング・分析サービスの提供。
	 減		◆ AI (人工知能)	○燃料電池車両・EV車両の導
			 ◆ 燃料電池車両・EV	入による低炭素化の実現と災 害時における移動可能な電力
			車両	供給基地の確保。
	ごみの減	● ごみの減量化	◆ モニタリング技	○食品ロスの削減に向けた、ご
	量化推進	●ゴミ収集の最適 化・効率化	術	み排出量のモニタリングと分析サービスの提供。
		16 - 刈午16	… ◆ AI (人工知能)	○ゴミ排出量のモニタリング・
			, , , , , , , , , , , , , , , , , , , ,	分析による、ゴミ収集ルートの見渡れた回収状況の見える
				の最適化と回収状況の見える 化。
行政経	住民サー	●健全な財政運営	◆ マッチング技術	○感染症対策も踏まえた行政事
営分野	ビスの維	● 行政サービスの最 適化,効率化	◆ AI (人工知能)	務に関するデジタル・オンラ イン申請サービス, キャッシ
	持向上			ュレスサービスの提供。
				○ニーズとシーズのマッチング による新サービスの提供。
	高速通信	● 民間イノベーショ		○産・官・学連携による、新たな
	網の整備	ンの誘発促進		サービスの展開。
L		I	<u>l</u>	<u> </u>

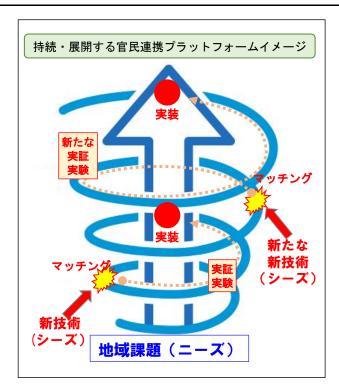
(3) 取組内容

① 取組の全体像

(将来イメージ①) 技術オリエンテッドから課題オリエンテッドへ

解決すべき課題の設定が曖昧なままに、技術を使うことを優先していた「技術オリエンテッド」から、「どの課題を解決するのか」、「何のために技術を使うのか」について明確なビジョンを持って取り組む「課題オリエンテッド」へ

(将来イメージ②) 個別最適から全体最適へ


一つの分野,一つの主体にとっての最適解を 追及する「個別最適」から,都市全体の観点か らの最適化を追求する「全体最適」へ

(将来イメージ③)公共主体から公民連携へ

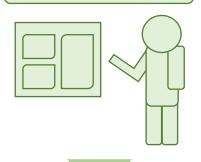
自治体発で取組を主導する「公共主体」から、 民間企業の技術が常に課題に向き合える体制 を構築して取り組む「公民連携」へ

- 〇官民連携プラットフォームは、地域課題 (ニーズ) と民間事業者からの新技術 (シーズ) 提案をマッチングし、実証実験を経て、新しいサービスを地域に提供していきます。
- 〇また、ニーズとシーズのマッチングは、時間経過の中で常に繰り返され、更に新しい技術、 新しいサービスを展開します。

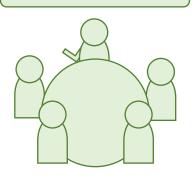
■ 官民連携プラットフォーム展開イメージ

② 取組概要

【STEP①】 シーズ調査


- ・まず, 呉市の課題 (ニーズ) の解決に資する先進技術 (シーズ) の提案を, 民間事業者 等から募集する。
- ・その後、ニーズとシーズが適合する場合には、提案者とワーキングを実施する。さら に、実証実験や実装に向けて意見交換を行う。

募集


- ○スマートシティの取組により解決したい呉 市の課題を提示
- ○提示された課題を解決し得る技術提案を募 集(当面の間,随時受付)
- ○ⅠCT民間事業者を中心に広く募集

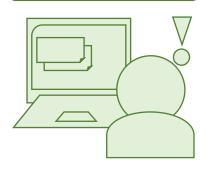
提案

- ○応募者は、書面及びプレゼンテーションに より提案
- ○事務局及び呉市の所管課で,「ワーキング」 のプロセスへ進めることが適当かを検討
- ○コンソーシアムにも随時, 意見聴取

ワーキング

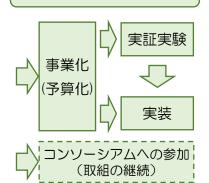
- ○ワーキング実施が適当と判断された提案に ついて応募者と所管課を中心に,ワーキン グを実施
- ○課題の掘り下げ,費用対効果等について意見交換
- ○ワーキングへの参加に係る費用は、各自の 負担とする

【STEP②】 調査結果の活用


- ・有望な提案をノミネートして公表する。その後,更なる提案の連鎖を誘導しながらブラッシュアップしていく。
- ・熟度が高まったものから事業化し、実証実験、実装を進める。
- ・提案者の承諾がある場合は、コンソーシアムの一員として取組を継続することも検討 する。

ノミネート

(ノミネート概要) スライドで 2 ~ 3 枚


- ○二ーズと適合する有望な提案を, まず「ノ ミネート案件」に位置付け
- ○提案者の承諾を得た上で、公表に向けて、 「ノミネート概要」を整理
- ○ノミネート案件は、将来の事業化を約束す るものではない

公表・ブラッシュアップ

- ○「ノミネート概要」を公表
- ○公表された「ノミネート概要」を踏まえ, 別の事業者がブラッシュアップ提案を行う ことも可能
- ○提案事業者の承諾がある場合は、ワーキン グにも参加可能

事業化等

- ○実現性, ビジネスモデルなどの検討を経て, 熟度が高まった案件から事業化
- ○熟度に応じ,実証実験の実施又は即時実装 を選択
- ○事業化に係る業者選定は、法令に基づいて 適切に手続を行う

(4) 官民連携による取組イメージ案

官民連携プラットフォームによる想定される取組イメージを以降に示す。

本案は、官民連携のイメージ案であるが、「官民連携プラットフォーム」における「シーズ」と「ニーズ」のマッチングにより、民間事業者からの各種提案を踏まえ、官民が連携して進めていくものである。

■ 「スマートチャレンジくれ」が目指す官民連携イメージ

【イメージ①】

取組例 <u>災害に強く、環境性の高い分散型エネルギーシステムの導入</u> 平成30年7月豪雨災害を踏まえた電力供給システムの強靭化、新技術を活用た省電力、低炭素化に向けて、市内の防災拠点等を起点に、従来の「大規模電と需要地を系統でつなぐ電力システム」から「分散型エネルギーリソースも柔に活用する新たな電力システム」への変革に取り組む。 【オージ 機料電池バスやEV車の導入により、災害時に移動可能な電力供給基地を実現 コージェネレーションシステム等を、空調やバックアップ電源として導入することにより、災害時にも電力供給可能	カテゴリー	市民生活・防災分野	×		環境分野
た省電力、低炭素化に向けて、市内の防災拠点等を起点に、従来の「大規模電と需要地を系統でつなぐ電力システム」から「分散型エネルギーリソースも柔に活用する新たな電力システム」への変革に取り組む。 ********* ************************	取組例	災害に強く,環境性の	高い分制	対型エネルギー	システムの導入
た省電力、低炭素化に向けて、市内の防災拠点等を起点に、従来の「大規模電と需要地を系統でつなぐ電力システム」から「分散型エネルギーリソースも柔に活用する新たな電力システム」への変革に取り組む。 ********* ************************		亚子 00 左肩 日克王《虚之财之》	よまし	ш.«Л	536#### //
と需要地を系統でつなぐ電力システム」から「分散型エネルギーリソースも柔に活用する新たな電力システム」への変革に取り組む。 ##報電池バスやEV車の導入により、災害時に移動可能な電力供給基地を実現 コージェネレーション エネルギーロスが少ないガスコージェネレーションシステム等を、空調やバックアップ電源として導入することにより、災害時		, , , , , , , , , , , , , , , , , , , ,			
					,
イメージ 燃料電池バスやE V車の導入により、災害時に移動可能な電力供給基地を実現 コージェネレーション エネルギーロスが少ないがスコージェネレーションシステム等を、空調やバックアップ電源として導入することにより、災害時					
歴料電池バスやEV車の導入により、災害時に移動可能な電力供給基地を実現 コージェネレーション エネルギーロスが少ない ガスコージェネレーションシステム等を、空調やバックアップ電源として導入することにより、災害時				. , . , , . ,	,
燃料電池バスやEV車の導入により、災害時に移動可能な電力供給基地を実現 コージェネレーション エネルギーロスが少ない ガスコージェネレーション システム等を、空調やバックアップ電源として導入 することにより、災害時	イメージ				
燃料電池バスやEV車の導入により、災害時に移動可能な電力供給基地を実現 コージェネレーション エネルギーロスが少ない ガスコージェネレーション システム等を、空調やバックアップ電源として導入 することにより、災害時					
燃料電池バスやEV車の導入により、災害時に移動可能な電力供給基地を実現 コージェネレーション エネルギーロスが少ない ガスコージェネレーション システム等を、空調やバックアップ電源として導入 することにより、災害時			エビロ	1= /	
な電力供給基地を実現 コージェネレーション エネルギーロスが少ない ガスコージェネレーション システム等を、空調やバックアップ電源として導入 することにより、災害時		/			
な電力供給基地を実現 コージェネレーション エネルギーロスが少ない ガスコージェネレーション システム等を、空調やバックアップ電源として導入 することにより、災害時		ــــــــــــــــــــــــــــــــــــــ			
コージェネレーション エネルギーロスが少ない ガスコージェネレーション システム等を、空調やバックアップ電源として導入 することにより、災害時					
エネルギーロスが少ない ガスコージェネレーション システム等を、空調やバッ クアップ電源として導入 することにより、災害時			巩		
ガスコージェネレーション 社会の実現に向けた, システム等を,空調やバッ CO2フリー電力の活用 クアップ電源として導入 することにより,災害時		コージェネレーション	adi		再生可能エネルギー
ガスコージェネレーション 社会の実現に向けた, システム等を,空調やバッ CO2フリー電力の活用 クアップ電源として導入 することにより,災害時			D	A	Ì Ý∰H
ガスコージェネレーション 社会の実現に向けた, システム等を,空調やバッ CO2フリー電力の活用 クアップ電源として導入 することにより,災害時		_# _#		S N	<u> </u>
クアップ電源として導入 することにより、災害時					· · · · · · · · · · · · · · · · · · ·
					CO2フリー電力の活用
		2	$\triangleleft \bowtie$	$\bowtie \bowtie$	
従来電力			従来	電力	

【イメージ②】

カテゴリー	市民生活・防災分野 × ー					
取組例	誰でも確実に災害情報を認知できる情報伝達手段の確立					
	気象情報,災害情報,避難所情報等を統合し,AIやIoT等の先端技術を用いて,					
	災害発生時に地域住民だけでなく,外国人を含む観光客など誰でもが,個々の状					
	況を適切に判断し, 最適な防災・避難行動を選択する支援システムの構築を目指					
	す。					
イメージ						
	以集					
	地震 吳市 上 PC・モバイル					
	土砂災害 河川情報 被害報告 公開ポータル					
	J-ALERT 住民メール					
	まサイル 大規模テロ メール 緊急速報メール					
	防災情報 共有システム					
	原 染症 聚急文字放送					
	「防災関連情報 /) 信 ソーシャルメディア					
	SNS SNS					
	通報 現在地 所 於					
	被害発生					
	選行情報 情報登録 措置・要請 公共交通 遊離者・遊離所 備蓄物資 最寄りの利用可能な					
	是 市民·観光客 □ 中日 □ 中					
	阅 液角					

【イメージ③】

カテゴリー	子育て・教育分野 ×	行政経営分野			
取組例	若い世代が安心して子供を産み、育て	[られる,「子育て・教育」環境の構築			
	AI や IoT 等の先端技術を用いて、若い世代の誰でもが、出産・子育てに関する不安や雇用や収入の不安定さ、仕事と子育てに関する不安などを抱くことなく安心して出産・子育てを行うことができる環境づくりを進める。				
イメージ					
	◆出産・子育で ✓ 医療機関等と連携した子育てイベント情報や相談窓口予約、保育園・小学校情報の提供など、子育て世代が必要とする情報を集約するサイトの構築	◆見守り ✓ 子供たちの安全を守る、スマート フォン、GPS、地域カメラなどを 活用した見守りシステムの構築			
	◆教育 ✓ 遠隔授業による多様な学習機会の確保 ✓ グローバル人材の育成に向けた、世界中とつながるICT教育の実践	◆雇用・収入確保 ✓ テレワークの推進 ✓ 託児所付きワークスペース (シェア オフィス) の確保 ✓ クラウドソーシングの強化			

【イメージ④】

カテゴリー	市民生活・防災分野 × 都市基盤分野
取組例	都市の各種流動データの収集・活用による、スマートプランニングの実施
	通信ネットワーク技術、センシング技術を活用し、地域における人の流れや観光 客等の行動パターンデータを収集・分析し、地域における回遊性向上、地域モビ リティとの連携強化、街路空間づくりなどの施策展開に活用する。
イメージ	
	 ◆データの収集 ✓ AIによる画像認識データ蓄積 ✓ データの蓄積 ✓ 他データとの連携(関連付け) ◆データの分析・予測 ✓ カスラの日本化
	 ✓ 交通量の最適化 ✓ 交通ダイヤ、ルートの最適化 ✓ ウォーカブルなまちづくり推進 ✓ データの可視化 ✓ 子供・高齢者の見守り ✓ 歩行者の分布・混雑状況の分析 ✓ 時間・曜日等別歩行者動向分析 ✓ 回遊行動分析 ✓ 観光客の行動パターン分析

【イメージ⑤】

カテゴリー	産業分野	× 行政経営分野
取組例	作業負担が小さく,生産	産性が高い,スマート農業の実現
	業における作業負担を軽減するとと	技術を用いたスマート農業の実現により,農さもに,若者にも魅力ある,生産性が高く,儲これまで培われてきた栽培技術を継承する。
イメージ		
	く 自動 く ドロ く 農作 く 屋内	は担の軽減 動運転車両の実装 ローンの活用 作物の生育管理 内型人工栽培技術 開発
	◆儲かる農業の実現	◆技術の継承
	✓ AIを用いた気象や市場情報分析による。	✓ ビッグデータの蓄積・解析✓ 暗黙知の見える化
	場情報が加こよる。 販売価格の予測	HEWINA ON SELECTION OF THE PROPERTY OF THE PRO

【イメージ⑥】

カテゴリー	産業分野	×	福祉健康分野
取組例	誰でもが安心して、	健康的	りに暮らすことができる.
	<u>スマートウ</u>	ェル	<u> ネスシティの実施</u>
	AI や IoT 等の先端技術を活用する	こと	により、リアルタイムでの健康状態の把
	握や見守りを実現し、病気の早期を	発見,	予防医学などを進める。また, ロボット
	技術の導入による医療従事者の負	担の軸	経減や高齢者を抱える家族の負担軽減に
	つながる仕組みづくりを進める。		
イメージ			
	◆ヒューマンデータの活用 ◆健康寿命の延伸		
	✓ ヒューマンデータのモニタリング ✓ 遠隔健康指導の実施 <u>→</u>		
	✓ オーダーメイド治療・健康管理の実施 ✓ 高齢者の外出機会の創出 ✓ ・		
	✓ 医療従事者によるカルテの共有	1	
			7 - 4 - 6 - 6
	/ · · · · · · · · · · · · · · · · · · ·		
	◆医療従事者等の負担軽減	_ 144 _	◆高齢者・その家族の負担軽減
	✓ 医療支援,介護支援ロボットの✓ AI診断	の導入	✓ 遠隔医療の実施 ✓ 処方箋薬の宅配サービス 🍑
	✓ 自動記録電子カルテの導入		✓ 高齢者の見守り
	✓ 遠隔服薬指導の実施		

【イメージ⑦】

カテゴリー	都市基盤分野	×	行政経営分野		
取組例	センシング技術とデータ統合による、インフラマネジメント及び				
	<u>行政</u> +	ナービ	スの効率化		
	AI や IoT 等の先端技術を用いて、	公共	空間の利用や管理に必要となる情報を継		
	続的に計測し、公共インフラの維持	恃,管	理に活用する。また, 行政手続き等の効		
	率化,省力化を推進する。				
イメージ					
	〇都市基盤整備				
	✓ 3次元位置情報地図の基盤構築				
	✓ インフラ維持管理情報のDB化✓ 有休物件のDB化	・一元	1L		
	✓ センサーを用いた溢水情報等の	把握			
		-			
	〇行政手続き等の効率化				
	✓ オンライン申請化				
	✓ キャッシュレス化✓ ペーパーレス化				
	✓ パブリックコメントのスマート	化			

【イメージ⑧】

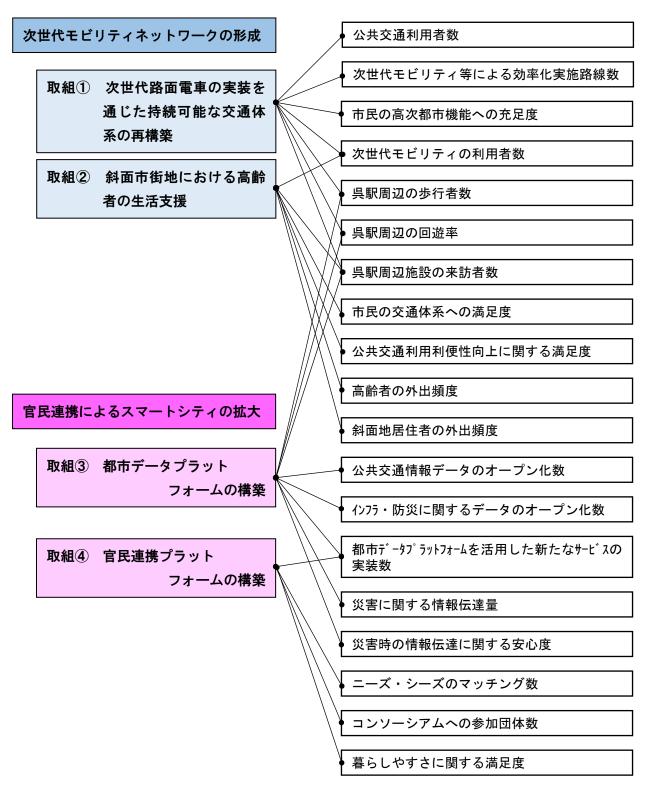
カテゴリー	環境分野	×	市民生活・防災分野	
取組例	未来につなげる循環型社会形成のための I C T を活用したエコアクション			
	した一方で、様々な環境問題を生じ	こさせ	済システムは、豊かさや快適さをもたら てきました。生活利便性と環境保全を両 より良い未来で誰もが暮らしやすい街の	
イメージ	◆スマートなごみ収集管理 ✓ ごみ収集車の位置情報をマッピング ✓ 収集したごみの量をクラウドに送りビッグデータ化 ✓ データをAIで分析し効率的な収集ルートを作成 ✓ SNSを活用したごみの個別収集 ✓ ごみ出しアプリ (ごみ分別・カレンダー・不法投棄報告)			
	◆ICTを活用した食品ロス対策 ✓ AI需要予測 ✓ WEBマッチングサービス ✓ フードシェアリングプラット フォームの構築		◆スマートな市営墓地管理✓ データによる墓地の一元管理✓ 合葬式墓地の整備✓ ネット霊園に集約し利用者はバーチャルで墓参り	

【イメージ⑨】

カテゴリー	市民生活・防災分野	×	_	
取組例	多様化・大規模化す	⁻ る火	<u>災や自然災害を鎮圧する</u>	
	Society 5.0 時代	:の消	防活動イノベーション	
	今後発生が懸念されている南海ト	ラフ坩	也震や首都直下地震が発生した際には、	
	甚大な被害が予想され、消防隊が現場に近づけない等の大きな課題があります。			
	これらの災害に対応するため, A	I やI	コボティクスなどの先端技術を活用した	
	消防活動の取り組みが求められてい	ハます	0	
イメージ				
	◆消防活動のさらなる効率化		◆災害予防啓発のデジタル化	
	✓ SNSによる災害情報の収集		✓ デジタルサイネージによる情報発信	
	✓ AI救急需要分析(季節,気象,		✓ VRを活用した火災予防啓発	
	曜日等)による救急隊員の配備 ✓ 災害ハザードマップのデジタル化 (※宝ス浬 0.0 ス・ルゴ)			
	✓ 消防活動マニュアルのAI化 (災害予測, 3 Dマップ)			
	◆次世代テクノロジーによる災害救助活動			
	✓ 飛行型偵察・監視ロボット、放水ロボットの導入			
	✓ ドローンとサーモグラフィカメラを活用した消火活動			
	✓ ドローンとソナーを活用した水難救助			
	₹_▶			
			• •	

【イメージ⑩】

カテゴリー	文化・スポーツ分野 × -
取組例	VR・センシング技術を活用した文化の継承及び、スポーツの普及促進
	地域の伝統文化は、次世代に継承していくべき貴重な財産であるが、地域の少子 高齢化等により難しい状況になっている。また、スポーツ分野においては、科学 的解析による更なるレベルアップが求められている。VRなどの先端技術を活 用し、地域の一体感や魅力づくり、活力の醸成を目指す。
イメージ	
	◆ICTを活用した文化の保存・継承 ✓ VR・ARによる文化財の適正保存 ✓ VR・ARによる祭りの継承
	◆ICTを活用したスポーツの普及促進 ✓ センシング技術活用によるトップアス リートの育成 ✓ ローカル5G活用によるVRスポーツ観戦


【イメージ⑪】

カテゴリー	子育て・教育分野 × -
取組例	GIGAスクール構想の実現に向けた、先端技術を活用した教育の推進
	多様な子供たちを誰一人取り残すことなく、子供たち一人一人に公正に個別最適化され、資質・能力を一層確実に育成することが求められている。これまでの教育の実践と先端技術のベストミックスを図ることにより、教師・児童生徒の力を最大限に引き出す。
イメージ	
	◆個別最適化された授業 ✓ A I による子供の習熟状況に応じた個別学習 ✓ A I による進路相談 ✓ 部活動のオンライン指導
	 ◆問題を抱えた子供への対応 ✓ 不登校などの子供のための遠隔授業 ✓ 家庭・学校・医師とのセキュアな情報連携ツールの導入 ◆学校内でのICT技術の活用 ✓ オンライン参観 ✓ オンラインオープンスクール ✓ 防犯カメラを活用した顔認証による不審者への対策

5. KPIの検討

5.1 取組内容に対応するKPIの候補選定

取組内容の達成度を計測するためのKPIの候補を選定する。なお、ここでは測定の現実性は考慮せずに選定した。

■ KPIの候補選定

5.2 取組内容に対応するKPIの設定

KPIは、取組内容を的確に評価可能な内容であるか、現況値の計測の可能性、将来のモニタリングの容易性を踏まえて設定することが求められる。

そこで、上記のKPI候補から、これらの視点から判定を行い、KPIを設定した。

■ KPIの適正評価

	取組内容の	現況値	モニタリンク゛
	評価性	計測性	容易性
公共交通利用者数	Δ	0	0
次世代モビリティ等による効率化実施路線数	0	0	0
市民の高次都市機能への充足度 (主要都市にふさわしい都市機能が充分であると感じる人の 割合)	0	0	0
次世代モビリティの利用者数	0	Δ	Δ
呉駅周辺の歩行者数	\triangle	\triangle	Δ
呉駅周辺の回遊率	\triangle	\triangle	Δ
呉駅周辺施設の来訪者数	0	\triangle	Δ
市民の交通体系への満足度	0	0	0
公共交通利用利便性向上に関する満足度	Δ	Δ	Δ
高齢者の外出頻度	Δ	\triangle	Δ
斜面地居住者の外出頻度	Δ	\triangle	Δ
公共交通情報データのオープン化数	\triangle	\triangle	Δ
インフラ・防災に関するデータのオープン化数	\triangle	\triangle	Δ
都市データプラットフォームを活用した新たなサービスの 実装数(実験環境及びオープンデータの活用によるものを含む)	0	0	0
災害に関する情報伝達量	Δ	Δ	Δ
災害時の情報伝達に関する安心度	Δ	Δ	Δ
ニーズ・シーズのマッチング数	0	0	0
コンソーシアムへの参加団体数	0	0	0
暮らしやすさに関する満足度	0	0	0

○:適性がある△:適性が劣る

■ KPIの選定

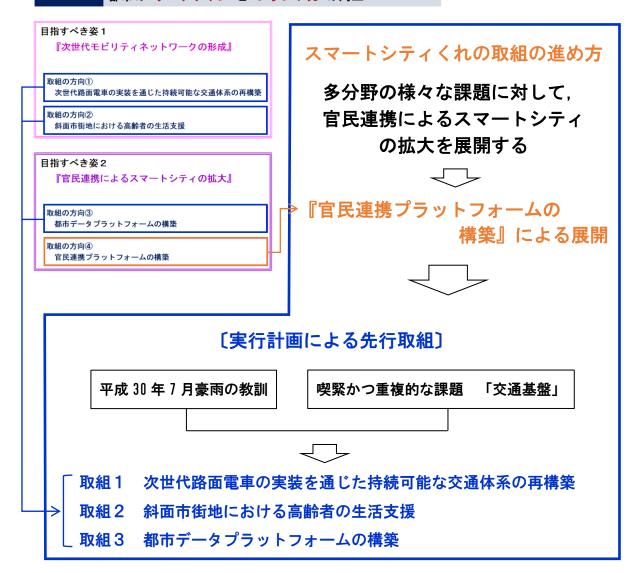
取組内容	KPI	選定理由
次世代モビリティネット「	フークの形成	
取組①	市民の高次都市機能への充	○ 新技術の導入により、呉駅を中心とす
次世代路面電車の	足度	るエリアの総合的な魅力度を計測で
実装を通じた持続	(主要都市にふさわしい都市機	きる。
可能な交通体系の	能が充分であると感じる人の割	○ 市民意識調査で定期的にモニタリン
再構築	合)	グが可能である。
取組②	市民の交通体系への満足度	│ ○ 交通体系が脆弱な斜面市街地におい
斜面市街地におけ		て、新技術を含めた交通体系の満足度
る高齢者の生活支		を計測できる。
援		○ 市民意識調査で定期的にモニタリン
		グが可能である。
官民連携によるスマートシ		
取組③	都市データプラットフォームを活用し	│○ データストックだけを計測するので
都市データプラッ	た新たなサービスの実装数(実	はなく、都市データプラットフォーム
トフォームの構築	験環境及びオープンデータの活用に	のデータを活用する効果が測定でき
177 五の構業	よるものを含む)	る。
取組4	ニーズ・シーズのマッチング	○ 多分野の課題に対する新技術導入の
「秋畑(サ	数	程度を計測できる。
フォームの構築	コンソーシアムへの参加団	○ 呉市スマートシティに対する産官学
フォームの情報	体数	の意識向上が測定できる。

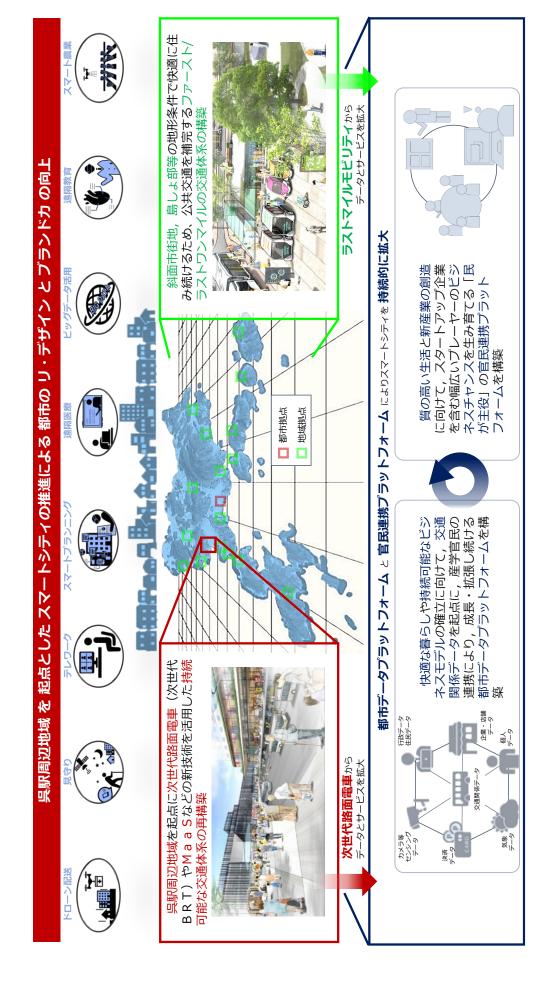
■ KPIの設定

取	組	KPI	現況値(R2)	目標値	達成年度	
次世	次世代モビリティネットワークの形成					
	取絲	且内容① 次世代路面電車の実装を通じた持続可能な	交通体系の再	構築		
		市民の高次都市機能への充足度 (主要都市にふさわしい都市機能が充分であると感 じる人の割合)	10. 3% ^{*1}	充足感の 向上	R7年度末	
	取約	且内容②:斜面市街地における高齢者の生活支援				
		市民の交通体系への満足度	-0.3ポイント ※2	満足度の 向上	R7年度末	
官員	官民連携によるスマートシティの拡大					
	取約	且内容③:都市データプラットフォームの構築				
		都市データプラットフォームを活用した新たなサービスの実装数 (実験環境及びオープンデータの活用によるものを含む)	_	5件以上	R7年度末	
	取組内容④: 官民連携プラットフォームの構築					
		ニーズ・シーズのマッチング数	_	30件以上	R7年度末	
		コンソーシアムへの参加団体数	4社	10者以上	R7年度末	

6. 先端技術導入に向けた検討

スマートシティくれの目指すべき姿を実現するための取組の進め方と実行計画による先行 取組を整理して、先行取組を選定するに至った「現状と課題」、「新技術導入の検討」、「取組 内容」を検討する。


6.1 スマートシティくれの全体事業概要


「スマートシティくれ」は、多分野の諸課題に対して新技術導入により、新たな解消を目指している。地域の課題は多分野に及ぶことから、新技術を保有する民間事業者との連携によりスマートシティの拡大を進めることが効果的である。

そこで、「取組の方向④ 官民連携プラットフォームの構築」によるニーズ・シーズのマッチングに取組み、スマートシティの展開を進める。

ビジョン

<mark>呉駅周辺地域</mark>を起点とした スマートシティの推進による 都市の リ・デザイン と ブランドカ の向上

| 「スマートシティくれ」の全体事業概要

6.2 次世代路面電車の実装を通じた持続可能な交通体系の再構築

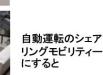
(1) 現状と課題

少子高齢化,モータリゼーションの進展によるバス利用者の減少,運転手の不足等により, バス事業の維持が困難な状況となっている。これにより,さらにバス路線の廃止・短絡化な どを引き起こしており,悪循環に陥っている。

このような中、平成30年の豪雨災害時には、土砂災害により基幹道路が通行止めになり、 さらに、市内各所で深刻な渋滞が発生した。この時、広島呉道路の一部通行可能区間をJR 呉 線の代行バス等が緊急通行する災害時BRTを運行し、市民・通勤利用者の足を確保した。

これを通じて、公共交通の必要性を市民が再認識するきっかけとなった。

以上のような観点から、当区域では、次世代モビリティ(次世代 BRT,自動運転車両など) や MaaS などの新技術を活用し、持続可能な交通体系への再構築が必要となっている。


■ 災害時の都市間交通を支える「災害時BRT」

・災害時には、4車線化される広島呉道路に専用 レーンを設置することにより、呉駅と広島市と をつなぐ災害時BRTを実現

大きな駐車場で 人は窮屈

電子連結にするとトラックもバスも

駐車場が公園に 歩道もゆったりに

家への送迎も楽に

利用に応じて、付いたり離れたりで効率的に トラックが、貨物列車になったりトラックに戻ったり バスが、路面電車になったりバスに戻ったり

資料: R元.11.27 「呉市の交通まちづくりに関するフォーラム」 鈴木 克宗 氏(一般財団法人 道路新産業開発機構理事)講演資料から

■ 自動運転車両の連節・分離のイメージ

(2) 新技術導入の検討

現状の自動運転車両側における自己位置特定技術としては、以下のような技術がある。

- ○磁気マーカー, 電磁誘導線
- ○高精度GPS
- ○車載センサー (LiDAR:レーザースキャナーなど)

現状,自動運転車両における自己位置特定技術については、その実装に向けての社会実験が各所で実施されており、以下のような技術的課題が指摘されている。

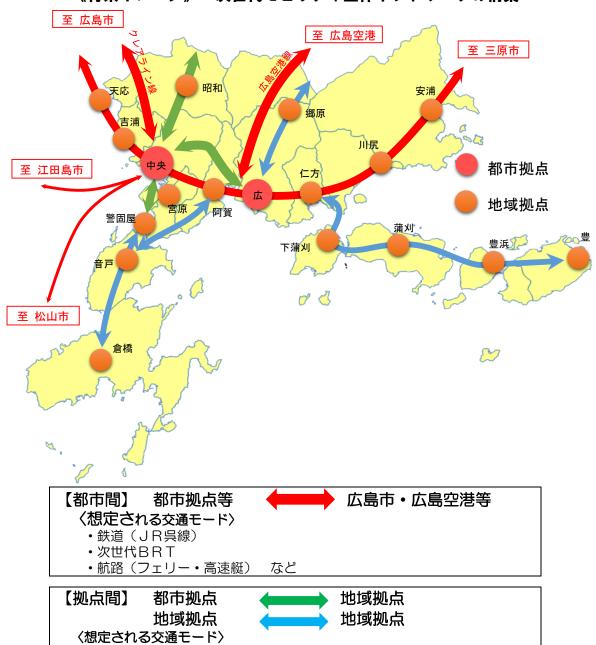
自動運転車両の実装に向けては、道路側の支援としての環境整備が必要となっている。

■ 自動運転車両に関する自己位置特定技術の課題

	技術的課題	必要となる道路側での支援技術
	▶降雪・霧等の気象条件による機能低下	
課題①	⇒正確な自己位置特定が必要となる	⇒自己位置特定のための支援機能の整備
	箇所において誤差が発生	
課題②	▶山間部,急こう配,分合流部で検知が困難	⇒自動運転に対応した走行空間の確保

■ 自己位置特定のための支援技術

	高精度 3 次元地図	磁気マーカー等	高精度GPS
導入候補	基準点 (X, Y, Z) 素精度 3 次元地図 を物心 合わせ込み カナラギセンターで 複雑した情報 (※2)絶対位置 表現も可能	を ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	衛星(X, Y, Z) 衛星(X, Y, Z) 衛星(X, Y, Z) (※1)衛性計測装置(IMU) を用いて補正する方法もある
技術概要	 ▶事前に高精度3次元地図を作製し、走行車両にカメラやLiDARなどのセンサーを取り付け、カメラで取得した情報と地図とを照らし合せて位置情報を算出する方法。 ▶高精度3次元地図に交通情報などを付加したものが「ダイナミックマップ」と呼ばれ、自動走行に求められる車線レベルの自車両位置の特定を可能にし、分岐点における行先に応じた最適な車線の選択、右左折に合わせた車線の選択を支援する。 	 ▶磁気マーカー又は電磁誘導線による2種類がある。車両側は底部に設置したセンサーで「磁気マーカー」等を検知し、走行場所を特定する。 ▶「磁気マーカー」は、走行ルート上の道路に磁石(マーカー)を埋設又は敷設し、S極とN極の配置パターンにより、車両に対して速度指定や停止等の情報の伝達を行う。 ▶「電磁誘導線」は、走行ルート上に交流電流が流れる誘導線を埋設し、自動運転車を、当該電磁誘導線に沿って走行させる。 	▶高精度GPSは、衛星から(X, Y, Z座標)の情報を受信し、かつ、電子基準点からの補正情報や慣性計測装置(IMU)を使った補正により、車両の位置情報を特定する。
技術特性	▶位置特定では、降雪や霧等の気象変化等によるセンサー性能の低下が懸念。また、地図データの精度の維持も課題。▶高精度3次元地図データは、車両位置特定だけではなく、インフラの維持管理、防災・減災への事前対策等、様々な分野での活用が可能。	▶電磁誘導方式では、磁気マーカーや電磁誘導線の埋設など施設の整備と管理が必要となる。	▶ 高精度GPSの場合は、山間部等地理的な要因(切土面や樹木等)やトンネル・橋梁下等構造的要因によってGPSの測位精度が低下したり、受信できないエリアの存在が課題となる。
技術特性を踏まえば思される範囲		⇒設置コストは比較的安価。しかし、全道路への電磁マーカー等の敷設は困難。⇒限定された道路では、比較的導入しやすい。	
概算整備単価	約 7,700千円/km	約 3,300千円/km (電磁誘導線の場合)	(道路環境整備は該当なし)


■ 自動運転に対応した走行空間整備の技術

	着色舗装	路面表示の図柄の統一	自動運転専用標識	信号機連携制御
導入候補			をカーブあり (R=15m・θ=175°) カメラ・センサー による読み取り 自動運転車用標識 のイメージ例	
技術概要	▶ 自動運転車が安全かつ円滑に走 行できるように、自動運転車と 他の車両等を道路構造的に分離 するための対策の一つとして、 自動運転車専用車線に着色する 方法。	▶着色舗装と同様に、自動運転車 と他の車両等を道路構造的に分 離するための対策の一つで、自 動運転車が走行することを明示 する路面標示を施すもの。	▶ QRコードが一体となった道路標識で、道路上に設置されたQRコードを自動運転車に搭載されたカメラが読み込むことで、車両側は瞬時にさまざまな情報を取得することが可能。	ルート上の交差点の信号制御器に専用の無線装置を取り付け、点灯している信号の色や点灯残時間などの情報を自動運転車両に送信。●受け取った車両は、情報をもとに自動運転で走行する。
技術特性	▶ 自動運転車走行車線とその他の 車線を視覚的に分離。ただし, 自動運転車両走行車線であることを周知する立看板や路面標示等が必要。▶ 自動車メーカーから,自動運転における実証の課題として,カラー舗装等によるセンサー等の認知誤差が挙げられている。	▶路面標示図柄を統一することにより、地域内だけではなく、地域外からの来訪者にも理解可能となり、自動運転車が走行することが明確に認知される	 ▶ QRコードは、数字のみであれば7,089字、英数4,296字、漢字・かな1,817字のデータ格納が可能。 ▶ QRコードは、国際的にも広く規格が普及しているため、今後国際基準となる自動運転向けインフラが誕生する可能性もある。 	➤ これまで、信号機の確認は車載 カメラを利用することが多かっ たが、逆光や障害物での不識 別、確認信号の誤認識などの課 題があった。➤ 直接車両に信号機の情報を送る ため、より正確に信号確認等が 可能となる。
技術特性を踏 まえて導入が 想定される範 囲	▶急カーブなど注意喚起を要する エリアでの導入が想定される。▶センサー等が誤って認識しない ように、舗装などの反射率・反 射度の基準化が必要。	_	_	_
概算整備単価	約 29,700千円/km (※3m幅員)	約 12,800千円/km (※1車線)	約 5,500千円/km	約 500千円/km

(3) 取組内容

① 取組の全体像

《将来イメージ》 次世代モビリティ全体ネットワークの構築

- · 鉄道(JR呉線)
- ・次世代BRT(※移動量が多い路線は隊列走行を検討)
- ・路線バス・デマンドバス など

【拠点間】 都市•地域拠点内移動

〈想定される交通モード〉

- ・次世代モビリティ(小型自動運転車等)
- デマンドバス・タクシー
- ライドシェア・カーシェアリング
- ・パーソナルモビリティ
- 自転車(レンタサイクル含む)
- ・生活航路 など

■ 次世代モビリティ全体ネットワーク構成イメージ

② 取組内容

『都市間・地域間ネットワークの構築~災害発生時にも活躍する次世代路面電車の導入~』

■呉市電を「次世代路面電車」で復刻

- ・呉駅を起点とする中・小型の次世代モビリティの導入
- ・ピーク時間帯は隊列・連接バスによる大量輸送

【次世代路面電車とは】

次世代の公共交通体系における基幹交通の運行形態 として、中・小型の自動運転車両がフレキシブルに連 節・分離し、ニーズに応じた効率的な運行を実現する 次世代路面電車の導入を想定。

■ 都市間・地域間ネットワークイメージ(次世代路面電車導入イメージ)

※上記には、車両導入費は含まない。

道路環境整備イメージ(例)

③ 今後の取組

本市ではこれまで、2019年は燃料電池バスの走行及び災害時等を想定した燃料電池を電源 として活用するPRイベント、2021年には自動運転バスの走行実験など次世代モビリティ導 入に向けた社会実験を実施している。

今後の取組としては、以下を検討・実証実験の実施によりニーズに合った実装を目指す。

- ○官民連携プラットフォームによるシーズ・ニーズのマッチングにより、次世代モビリティの走行実験を順次拡大し、実装する次世代モビリティ、道路側の支援技術、実装に向けての必要な公共空間の再整備等を検討する。
- ○社会実験は呉駅巡回ルートから着手し、段階的に呉駅一新広駅の都市拠点間ルートなどに拡大して社会実験を継続することにより、次世代モビリティの認知度・受容性の向上を図るとともに、ルート・停留所・ダイヤ等の利用者ニーズを把握し、利用者ニーズに適応した運行形態を検討する。
- 〇呉駅周辺地域総合開発(第1期開発)の完了見込年度(2024年度)にあわせて,道 路環境整備を行い,次世代モビリティ(自動運転)の実装を目指す。

■ 社会実験の想定ルート(案)

○取組の連携業種(案)

運行主体	地元交通事業者
乗り継ぎ連携	鉄道事業者、路線バス事業者、航路事業者
MaaS	MaaS 開発事業者(ITベンダー等)

〔これまでの取組〕

次世代モビリティ導入に向けた社会実験

次世代モビリティの導入を軸とした新たな公共交通体系の構築に向けた社会実験

次世代バス (燃料電池バス) による社会実験 [2019年11月30日,12月1日,12月7日,12月8日]

商店街の通行状況

非常電源PRイベント

自動運転バス

自動運転バス走行実験 [2021 年 1 月 22 日~24 日]

6.3 斜面市街地における高齢者の生活支援

(1) 現状と課題

人口減少や少子高齢化の急速な 進行,公共交通利用者の減少,運転 手不足など, 呉市の地域公共交通を 取り巻く環境は年々厳しさを増し ている。このため、公共交通(バス 路線等) における従来どおりのサー ビスの提供が困難となってきてお り,路線の廃止など,公共交通(路 線バスやタクシー等) サービスは縮 小傾向にある。

さらに,狭隘な道路が複雑に入り 組んでいる呉市の斜面地域におい

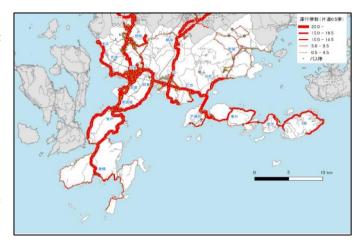


図 呉市の路線バス網

ては、以前から、最寄りバス停等と自宅とを接続する端末交通が整備されていないため、自 家用車移動に依存する傾向が高くなっている。

これらは、高齢化が急速に進む中、高齢ドライバーによる交通事故の危険性の増加や自家 用車移動ができない人々の外出機会を制限する要因となっている。

このような中,従来の公共交通稼働エリアの一部を補完するとともに,未整備であった端 末交通サービスを確保するツールとして、ファースト/ラストワンマイルの移動手段として 小型モビリティの導入が必要となっている。

特に、呉市の斜面市街地など狭隘な道路が入り組んでいるエリアにおいては、小回りのき く小型モビリティの導入が効果的である。

特に斜面市街地に居住する高齢者は生活施設が利用しにくい状況であることから、ワンマ イルモビリティの導入のあわせて、交通事業者、呉駅周辺地域や地域の商店街・病院等と連 携して,交通情報・店舗情報・割引クーポン,また COVID19 関連の密情報,災害時の道路情

ォーカブルなまちづくりにも寄与する ことになり, 高齢者の外出機会を拡大 し、高齢者の交流機会を増やすととも に,運動不足の解消などにも寄与する。 また、家族などによる自家用車送迎など 第三者の負担軽減などにもつながる。

災害時等においても, 小回りのきく小 型モビリティは、地域内での人の移動や 物資の運搬などにおいて, その有効性を 発揮するものと想定される。

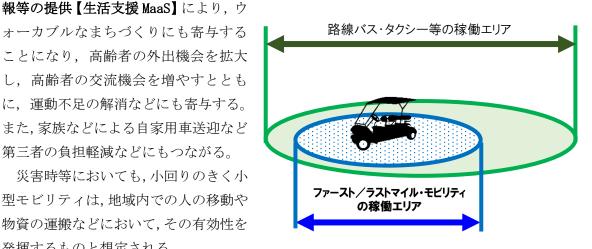
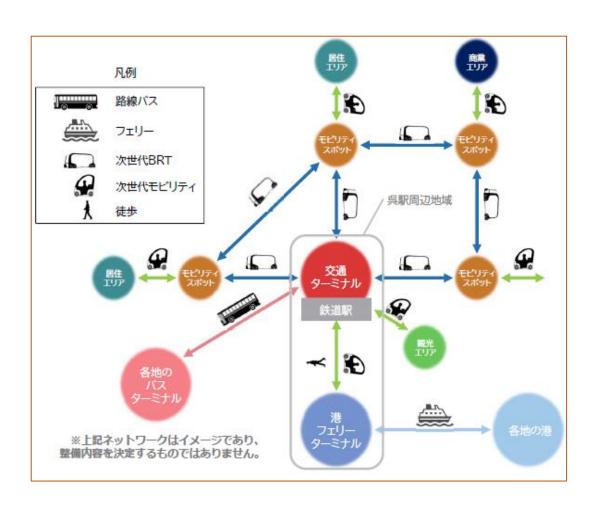


図 小型モビリティと路線バス等の役割分担

(2) 新技術導入の検討

斜面市街地内の複雑に入り組んだ狭隘道路を安全に移動することが求められることから, 次世代モビリティ(小型自動運転車等)等の導入を図る。

■ 超小型モビリティの事例

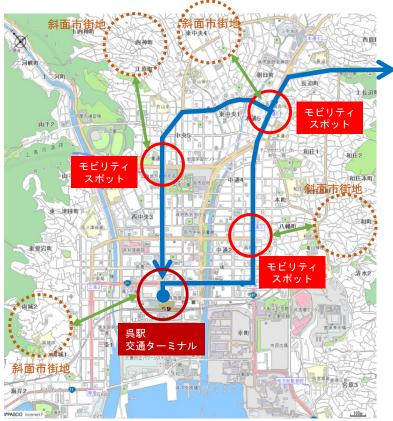

(3) 取組内容

① 取組の全体像

《将来イメージ》 地域内ネットワーク(ファースト/ラストワンマイル)の構築

子供から高齢者までの幅広い市民の誰もが気軽に外出し、中心市街地等の都市機能を享受できるように、特に斜面居住地を中心に、ファースト/ラストマイルハブと居住地周辺を結ぶ、地域内ネットワークの構築に取組む。

- 交通ターミナルと周辺エリアの間に、モビリティスポットを配置
- 次世代モビリティにより、交通ターミナルを起点とする地域内に次世代モビリティネットワークを形成
- 交通事業者、商店街との連携により、特に高齢者が安心して外出できる生活支援 MaaSを構築



■ 地域内の次世代モビリティネットワークの概念図

② 取組内容

次世代モビリティ, ファースト/ラストマイルモビリティの待機スペース, 待合機能を備えた乗り換え拠点

〈想定する交通モード〉

- ・次世代モビリティ (小型自動運転車等)
- ・デマンドバス・タクシー
- ・ライドシェア・カーシェアリング
- ・パーソナルモビリティ
- ・自転車(レンタサイクル含む)
- 生活航路

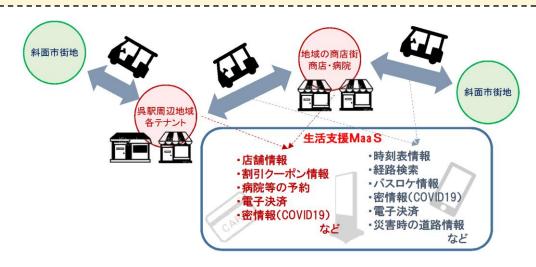
など

例)次世代モビリティ(トヨタ社製 e-Palette)

ファースト/ラストマイル モビリティ

小型・低速のファースト/ラストマイルモビ リティにより、斜面市街地の移動手段を確保

呉駅交通ターミナル


バスタプロジェクトの一環として, 総合交通拠点を整備

③ 今後の取組

2021年に、広島大学及び呉工業高等専門学校を連携して、斜面市街地の居住者を対象として、「グリーンスローモビリティ」を利用し、呉駅及やバス停等の交通拠点、あるいはれんがどおり等の市街地中心部への移動を体験して利用者の反応、交通手段として実装する場合の課題の検証を目的として、日常生活等における新たな移動手段の利用可能性を検証する社会実験を実施した。

今後の取組としては、生活支援の検討を含めて、実証実験の実施によりニーズに合った実 装を目指す。

- ○呉市中心部を取り囲む各地の斜面市街地, さらに島嶼部に社会実験を順次拡大し, ファースト/ラストワンマイルを担う公共交通としての課題を検証し, 実装に向けて官民連携プラットフォームによるマッチング, 利便性向上のための必要な情報・機能, 地域による運営形態の検討等に取組む。
- 〇斜面市街地に居住する特に高齢者の誰もが気軽に外出し、中心市街地等の生活施設が利用しやすい環境づくりに向けて、ワンマイルのモビリティの導入とあわせて、交通事業者、呉駅周辺地域や地域の商店街のテナント・各商店・病院等と連携して、発着時間の調整・バスロケ情報・店舗情報・割引クーポン、予約、電子決済、COVID19関連の密情報、さらには災害時の道路情報等の提供の社会実験やアンケート調査により課題を検証し、利用者と店舗が両者ともwin-winの関係となる生活支援 MaaS を構築する。
- 〇将来的には、観光地情報やJR等を含めた決済のシステム化等を含めた観光 MaaS も 視野に入れ、必要となる機能を検討する。
- 〇生活支援 MaaS は、呉駅周辺地域総合開発(第1期開発)の完了見込年度(2024年度)にあわせて実装を目指す。

■ モビリティと生活支援の融合による生活支援 MaaS イメージ

○取組の連携業種(案)

運行主体	地元交通事業者
生活支援	地元商店街,医療福祉団体(事業者)
MaaS	MaaS 開発事業者(ITベンダー等)

〔これまでの取組〕

日常生活等における新たな移動手段の利用可能性を検証する社会実験

斜面市街地の居住者を対象として、「グリーンスローモビリティ」を利用し、呉駅及やバス 停等の交通拠点、あるいはれんがどおり等の市街地中心部への移動を体験して利用者の反応、 交通手段として実装する場合の課題の検証を実施。

実施主体:広島大学及び呉工業高等専門学校

国土交通省「道路政策の質の向上に資する技術研究開発」(令和2年度)の支援を受けて実施

6.4 都市データプラットフォームの構築

(1) 現状と課題

データ活用に関して、呉市においても全国的と同様な以下の課題を有している。

[データ活用に関する課題]

① サービスの再利用・横展開が困難

個別最適化されたシステムで他地域への横展開が困難

② 分野間データ利活用が困難

各々が閉じたシステム(サービスとデータが1対1)で,分野間・都市内・都市間のサービス連携が困難

③ 拡張が低い

システム拡張性が低く,各地域でゼロからの構築が必要で,開発のスピードダウン・コストアップ

これらを踏まえると、個別システム構築によるスマート化は進みつつあるが、データの連携性・拡張性を念頭にした取組が必要であるとともに、「スマートシティくれ」の進め方である「官民連携によるスマートシティの拡大・展開」を進めていくためには、先端技術を有する民間事業者が呉市実態を的確に把握することが必要であることから、都市データプラットフォームの構築が必要である。

(2) 新技術導入の検討

シーズ調査における上記の課題を踏まえたデータプラットフォームの特徴は、以下のとおりである。

データの分野間,都市間などで利用を進めるためには、データをやり取りする間に「API」 (Application Programming Interface)を介して利用を展開することになる。

■ データプラットフォームの特徴

データ活用の課題

① サービスの再利用・横展開

個別最適化されたシステムで他地域への 横展開が困難

② 分野間データ利活用

各々が閉じたシステム(サービスとデータが 1 対 1)で、都市内・都市間のサービス連携が困難

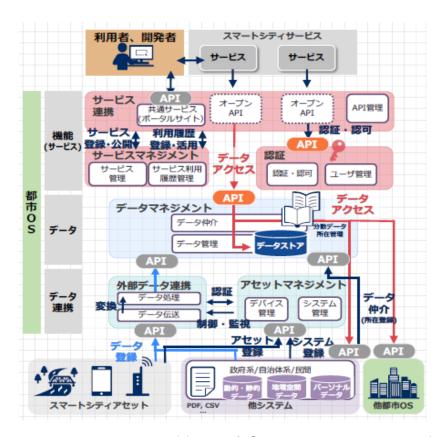
③ 拡張性の低さ

システム拡張性が低く,各地域でゼロからの構築が必要で,開発のスピードダウン・コストアップ

データプラットフォームの特徴

① 相互運用(つながる)

都市内・都市間のサービス連携や、各都市における成果の横展開が可能


② データ流通 (ながれる)

様々なデータを仲介して連携させる仕組み(サービスとデータがN対N)で、都市・サービス間の連携が可能

③ 拡張容易(つづけられる)

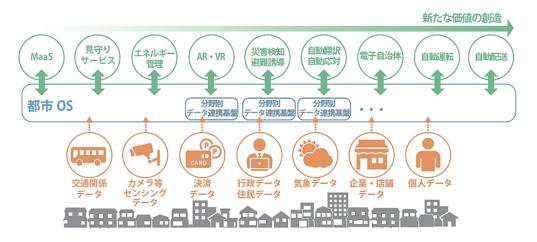
機能更新等による拡張の容易性,他地域 からの横展開により開発のスピードアッ プとコストダウン

資料:内閣府「スマートシティリファレンスアーキテクチャのつかい方」から抜粋

■ データプラットフォームの構成要素と関係性イメージ

(3) 取組内容

① 取組の全体像

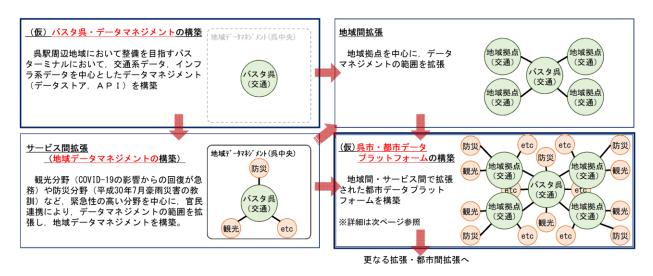

「第5次呉市長期総合基本計画」において、都市データプラットフォーム(都市OS)は スマートシティの構成機能として位置づけられている。

リーディングプロジェクトである呉駅周辺地域総合開発と連携した先行取組を進め、全市・他分野に展開する。

市内全域に張り巡らされた高速通信網を基盤として、先端技術を活用した新たな交通サービスや都市データプラットフォーム(都市OS)などでスマート化されたまちが、コンパクトシティとネットワークの核である呉駅周辺から全市域に拡がる形で、Society5.0が実現しています。

そこから生まれる人と人との出会いや交流、集まる情報などから、様々な分野でイノベーションが起こり、ライフスタイルが大きく変化するなど、全国の地方都市のモデルとなり、新しい時代にふさわしい質の高い生活を楽しんでいます。

(第5次呉市長期総合基本計画から抜粋)

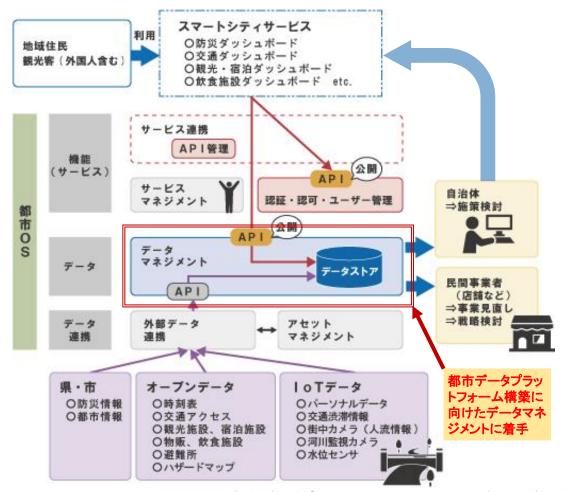


■ 都市データプラットフォームの将来イメージ

② 取組内容

「(仮)バスタ呉・データマネジメント」から 成長・拡張し続ける『呉市・都市データプラットフォーム』

呉駅周辺地域において整備を目指すバスターミナルにおいて、交通系データ、インフラ系 データを中心としたデータマネジメント(データストア、API)を構築し、これを起点に、 地域間・サービス間で拡張された『呉市・都市データプラットフォーム』の構築を目指す。


■ 成長・拡張する都市データプラットフォームイメージ

■ 活用データとサービス分野(想定)

データ分野	活用が想定されるデータ	活用が想定されるサービス分野
交通	GTFSデータ【国交省 標準化済】, ETC2.0データ, 道路交通情報, 歩行者情報	ルート検索・乗り物予約・決済, 渋滞情報 提供
防災	気象データ、災害・道路交通情報、水位・潮位データ、避難所データ、避難状況データ、緊急物資データ	災害情報提供,避難情報提供 避難所活動支援
エネルギー	電力・ガス利用データ	エネルギー利用最適化,省エネ意識の醸成
セキュリティ	GPSデータ	子ども・高齢者の見守り
インフラ 維持管理	3 Dマップデータ,地盤情報データ,設計データ,点検・更新データ,GISデータ	公共施設維持管理の効率化・最適化
観光	人流動態データ、観光地情報、飲食・宿泊施設情報、多言語情報、集客データ	観光情報検索、宿泊施設検察・予約・決済
健康	成長記録データ、検診データ、診察・投薬データ	健康リスク評価、データヘルス、遠隔地医療
教育	児童・生徒データ, 教職員データ, 学習記録情 報, 学力データ	学習支援, 教育体制の効率化(遠隔教育等)
生活利便性	人口データ、マイナンバーデータ 、 COVID-19接 触情報	行政サービスの効率化
農業	経営データ、栽培データ、栽培環境データ、田畑 や有害鳥獣などのセンサデータ	農業生産・経営の効率化・最適化
物流	貨物動態データ、倉庫利用データ	輸送の効率化・最適化
生産性	生産量データ、在庫データ	生産の効率化・最適化 新商品開発マッチング
産業振興	購買データ、来客データ、店舗立地データ	販売促進・最適化、出店計画支援

(仮) 呉市・データプラットフォーム データマネジメントの構成要素

【交通×観光×防災データマネジメントイメージ案】

資料:内閣府「スマートシティリファレンスアーキテクチャのつかい方」を参考に作成

■ (仮) 呉市・データプラットフォーム データマネジメントの構成要素

(展開分野) 也分野へ拡大 市全域へ拡大

「訪れたくなる・住みたくなる」スマートシティ

スマート・ウエルネスの実現

バイタルデータとデータヘルス を組み合わせ効率的な健康管理 を実現

スマート・エネルギーの展開

電気やが、7等の134ば、-利用デー9を活用し、省134ば・・134ば、-7ネジメ 汁を展開

人流データや流通データ,気象デー9等を組み合せ, ニーズ に応じた店舗展開を実現 商業施設展開支援 子どもや高齢者の位置情報と経 路情報を提供し移動弱者の見守 りを実現

子供・高齢者見守り支援

|機軸となる取組|

展開 「(仮)バスタ呉・データマネジメントの構築

公共交通情報のオールGTFS化 生活バス 15 路線, 乗合タク シー2路線, 航路3路線の **市全域へ拡大**

GTFS 化を実施

率的な移動を実現 交通系データ, インフラ系デークを中 (仮)バスタ呉 データマネジメント構築 心としたデータマネジメントシステム (データストア, API)を構築

観光・イベント情報と交通デ 一夕の活用により, 迷わず効 観光MaaS

災害時の交通情報を速やか に反映し,災害時の効率的な 防災MaaS 移動を実現

市全域へ拡大

展開

避難所活動支援

避難所への避難者データ, 活動を支援 水位センサーや崖崩れセンサー等により,災害情報をいち早く提供 災害リスク情報の提供

気象情報,災害情報,避難所情報 を統合し,最適な避難行動を支援 避難活動支援

「災害時に頼りになる」スマートシティ

(展開分野)

物資ストッ 避難所 地域の三次元データや施設点検・補 修データを蓄積し、迅速な復旧活動 を実現 インフラ情報のデータベース化 ク・不足デーク等を活用し,

他分野へ拡大 市全域へ拡大

(仮) 呉市・都市データプラットフォーム構築の流れと展開イメージ

図

③ 今後の取組

[今後の取組①]

都市データの一つとして,2020年度は「公共交通情報のオールGTFS化」を実施している。以下に取組の目的・内容を示す。

■公共交通情報のオールGTFS化(R2年度取組中)

○取組の目的

現状、呉市では、JR呉線や基幹バス路線のGTF S化は進んでいるが、生活バスや生活航路のデータ化 が進んでいない状況にある。

例えば、呉駅からグリーンピアせとうちに行くため の経路を Google マップで検索すると、右図のとおり結 果表示される。

安浦駅まで行けば生活バスが運行されているが、経路検索には未反映である。結果、利用客の利用機会が喪失されている。

こうしたことから、生活バスや生活航路の運行情報のGTFS化を実施し、オープン化を行う必要がある。

バスが走っているにもかかわらず, 経路検索に表示されない。

〈 ○ 吳駅

出発時刻: 13:45 *

○ グリーンピアせとうち

□ 50分 □ 一 ★ 6時間

経路が見つかりません

オプション

なお, 本取組は, 短期的には「利用客の増

加」,長期的には「(仮)バスタ呉・データマネジメント」の基幹データの整備を図るものである。

GTFSデータ作成を契機としてデータマネジメントを構築

- ➤ すでにデータモデルが標準化されているバス情報標準フォーマット「GTFS データ」を 機軸に交通系データを集積・管理
- ▶ そのほか、 "COVID-19 の影響により影響が深刻な観光分野"や "平成30年7 月豪雨災害を教訓に防災分野"等を順次、追加

○GTFSデータ整備の効果

- 1 バスタ呉・データマネジメントの基幹データの整備
- 2 経路検索サービスに掲載されることによる利用機会の増加
- 3 多様な活用による事業の発展・業務の効率化

○実施内容

~ 呉市の交通情報を無料で Google マップに表示します ~

○生活バス15路線(全18路線中),乗合タクシー2路線(全2路線),航路5 路線(全5路線)のGTFS化を実施

STEP① データベースの作成

生活バス及び生活航路の運行情報に関する「GTFS-JP」データを作成

STEP ② データのオープン化

作成したデータを、第三者が編集・加工等をできるようにインターネット上に 公開

STEP ③ 更新体制の確保

参加事業者へ作業方法の説明、アンケート等を実施。

ダイヤ改正や運休情報など,運行情報に変更がある場合の更新体制の確保に向けて検討。

<u>データ化する項目</u>

- ・停留所(名称,読み仮名,緯度・経度)
- ・路線・系統 ・時刻表 ・運賃表 等

国が示すコンテンツプロバイダ

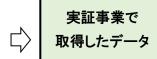
- ・ヴァル研究所
- 駅探
- google
- ・ジョルダン
- ・ナビタイムジャパン

【サブ・プロジェクト】 Google マイ・マップの作成

- ▶ GTFSデータの整備に当たっては、位置情報(緯度・経度データ)の搭載が、最も作業量が大きい。
- ▶ Google マイ・マップは、位置情報を簡易に登録し、GTFS形式に変換可能であることから、将来活用を視野に、文化財情報・観光情報などのGoogle マイ・マップの作成を進行中である。

[今後の取組②]

取組1・取組2の進行に合わせて取得したデータは、実証事業で取得したデータを取組3の都市データとして蓄積するとともに、システム検討を行う。また、蓄積したデータを基に分析を行い、PDCAサイクルにより実証内容の改良・改善を行い、ニーズに合った実装を目指す。


データ分野	活用が想定されるデータ	活用が想定されるサービス分野
交通	GTFSデータ【国交省 標準化済】, ETC2.0データ, 道路交通情報, 歩行者情報	ルート検索・乗り物予約・決済、渋滞情報提供
防災	気象データ,災害・道路交通情報,水位・潮位データ,避難所データ,避難状況データ,緊急物資データ	災害情報提供,避難情報提供 避難所活動支援
エネルギー	電力・ガス利用データ	エネルギー利用最適化,省エネ意識の醸成
セキュリティ	GPSデータ	子ども・高齢者の見守り
インフラ 維持管理	3 Dマップデータ、地盤情報データ、設計デー	公共施設維持管理の効率化・最適化
推行官理	タ, 点検・更新データ, GISデータ	
観光	人流動態データ,観光地情報,飲食・宿泊施設情 報,多言語情報,集客データ	制光情報検索、宿泊施設検察・予約・決済
健康	成長記録データ、検診データ、診察・投薬データ	健康リスク評価,データヘルス,遠隔地医療
教育	児童・生徒データ,教職員データ,学習記録情 報,学力データ	学習支援,教育体制の効率化(遠隔教育等)
生活利便性	人口データ、マイナンバーデータ 、 COVID-19接 触情報	行政サービスの効率化
農業	経営データ,栽培データ,栽培環境データ,田畑 や有害鳥獣などのセンサデータ	農業生産・経営の効率化・最適化
物流	貨物動態データ、倉庫利用データ	輸送の効率化・最適化
生産性	生産量データ、在庫データ	生産の効率化・最適化 新商品開発マッチング
産業振興	購買データ,来客データ,店舗立地データ	販売促進・最適化、出店計画支援

取組1

次世代路面電車の実装を通じた持続可能な交通体系の再構築

取組2

斜面市街地における高齢者の生活 支援

3D都市データ

取組3 都市データプラットフォームの構築

- 〇呉駅周辺地域総合開発 第1期整備完了(2024年度末)までは、取組①、取組②の実証事業に基づくデータ・3D都市データの蓄積及びシステム検討を行う。
- 〇蓄積データを基にPDCAサイクルにより改良・改善を行い, 実証事業に取組みニーズ に合った実装を目指す。

実証事業によるデータ蓄積

- 利用者属性
- ・発着地検索データ、検索を行った時間データ、利用ルート・停留所、
- 利用者数
- 利用店舗、病院等の利用需要、利用時間データ等
- ・ニーズ(アンケート調査結果等)
- 回答者属性
 - ・アンケート結果

等

○取組の連携業種(案)

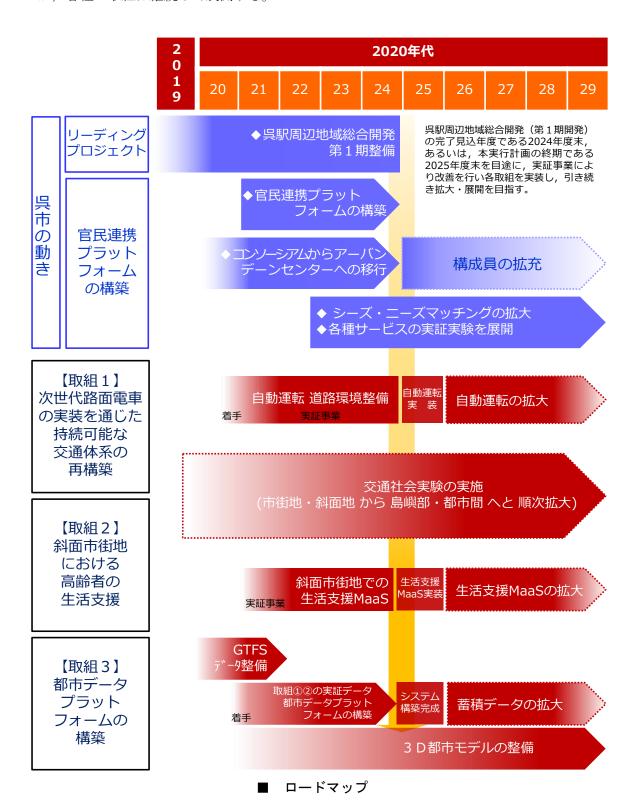
プラットフォーム構築	システム開発事業者(ITベンダー等)
------------	--------------------

6.5 取組の特徴の検討

4つの取組について、「先進性」「効率性」「継続性」「汎用性」の観点から特徴を検討した。

■ 取組の4つの特徴の内容

観点	内 容
先進性	導入技術・工夫が既往事例より進歩していること
効率性	維持管理の効率化やインフラ整備費削減等に寄与すること
継続性	継続的に運営できる計画・体制であること
汎用性	地域性によらない技術の活用・ノウハウであること


【取組①】次世	【取組①】次世代路面電車の実装を通じた持続可能な交通体系の再構築							
先進性	都市拠点内・間の公共交通を自動運転・MaaS などの新技術導入により、							
元進性	災害時も含めて持続可能な公共交通体系を再構築する。							
効率性	磁気マーカー等の新技術の設置は、官民連携により行うことで、維持管理							
列学注	の効率化を図る。							
継続性	自動運転等の新技術導入により、運転者不足等の問題解消の一助となり、							
邓 丛 称近7 生	民間事業の継続が可能となる。							
汎用性	都市拠点内の公共交通問題は、全国各地で生じており、汎用性のある新技							
7年11年	術導入により, 問題解消を図っている。							

【取組②】斜面	市街地における高齢者の生活支援
	次世代モビリティ導入により、ファースト/ラストワンマイルの交通手段
上 先進性	を確保し、【取組①】と連携して、都市拠点内の総合的な交通体系を構築し、。
	する。
効率性	地域住民の運営が可能なモビリティであることから,公共交通インフラの
劝十江	効率的な管理が可能となる。
継続性	低速で安全な次世代モビリティ導入により、地域住民等による運行・運営
州	が容易となり、地域ニーズに合わせた事業継続が可能となる。
汎用性	本市の特徴である狭隘道路が複雑に入り組んでいる斜面市街地は全国各
7亿万任	地に存在することから汎用性は高い。

【取組③】都市	データプラットフォームの構築
先進性	多分野データで構築する地域プラットフォームの連携により、地域性を踏
元连性	まえた都市データプラットフォームを構築する。
効率性	ビッグデータ分析等により,公共交通維持やエネルギー供給,ごみ処理等
刈学性	の最適化を図り、効率的な維持管理を図る。
	アーバンデザインセンターを中心として、新たな民間事業者の参画によ
継続性	り、公・民・学・住が連携し、各主体がメリットを享受するビジネスモデ
	ルを構築する。
汎用性	【取組④】と連携して、公共・民間のビックデータ化は一般化されつつあ
7亿/万 庄	り、行政課題解消、ビジネスモデル構築への活用の汎用性は高い。

7. スマートシティ実装に向けたロードマップ

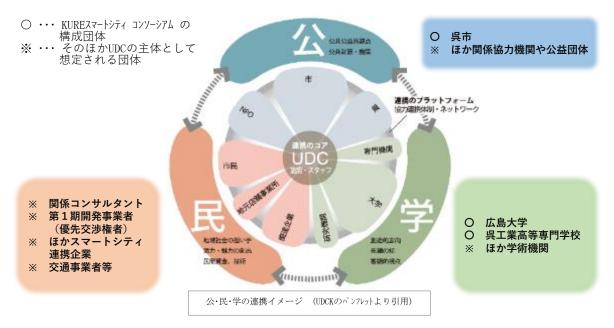
リーディングプロジェクトである「呉駅周辺地域総合開発」の第1期開発の完了見込年度である2024年度末との連携を踏まえて、呉市スマートシティ(第1期)となる本実行計画の計画期間は2025年度末とし、交通まちづくりを起点とした各種サービスの実装・展開を目指が、各種の取組は継続して展開する。

8. 構成員の役割分担

実行計画の取組は、KUREスマートシティコンソーシアム(将来はUDC)が民間と連携して実施する。

また、呉市スマートシティは、民間事業者が主役となりスマートシティに関連した実証実験やビジネスを行い、新たなビジネスの創造を推進するとし、この取組を「公・民・学の連携組織」(アーバンデザインセンター)を中心として、公・民・学が連携した官民連携プラットフォームにより、民間事業者との意見交換を行いながら、持続的にまちづくりの課題を解消し続けるものとする。

交通まちづくり を 起点に あらゆる分野で 新たなサービスの実装 と 新たなビジネスの創造 を推進



■ 役割分担・推進体制

9. 持続可能な取組とするための検討

9.1 公・民・学の連携組織による取組

呉市ではすでに、スマートシティモデル事業への応募を契機に「KUREスマートシティコンソーシアム」が組成されており、現在の取組を持続的に広げ、多様なステークホルダーの連携組織として、行政、民間、学術研究機関からなる「アーバンデザインセンター」を設立し、新たな価値を創造する取組を継続する。

※ UDCの設立に向けて、現在のKUREスマートシティコンソーシアムの構成団体に呉駅周辺総合開発(第1期開発)の開発事業者(優先交渉権者)等を加え、UDC設立準備組織を組成し、UDCの体制や活動方針を検討します。

■ アーバンデザインセンターの構成イメージ

※ 概念図は、いずれも「呉駅周辺地域総合開発基本計画」から転載

時代を変革する先駆的サービスの創造

~ 交通まちづくりとスマートシティの実現に向けた社会実験 ~

茨城県常陸太田市 自動運転実証実験

ひたちMaaS実証実験

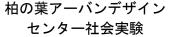
人と建物の健康をサポート するIoTスマートホーム実 証

公・民・学の連携による新たな価値の創造 ~ 呉市版「リビングラボ」の実施 ~

鎌倉リビングラボ

co-ba呉高東

公・民・学の連携のイメー



多用途に使える魅力的な広場空間の創造

~ 公共空間の有効活用に向けた社会実験 ~

バスタマーケット

大東ズンチャッチャ夜市

■ アーバンデザインセンターの取組例

9.2 持続可能なビジネスモデルの構築

アーバンデザインセンターを中心に、官民連携により、**多様**なデータを都市データプラットフォームに格納・蓄積し、**多**分野への展開検討、高質なサービスの開発を目指す。

(1) ビジネスモデル確立に向けての課題

民間事業者がスマートシティに取組む際の主な課題を整理した。

- 中小事業者にとってMaaSとは何かイメージがつかない。
- チャレンジには敷居が高い。
- マートなサービスを生み出すための資源 (データ) がない。あるいは整理されていない。
- 自動運転車両が開発されても、走行させるための専用レーンや通信環境、磁気マーカーがない。

(2) 具体的取組とビジネス環境の変化

民間事業者がスマートシティに取組む際の主な課題に対する取組の推進にあわせて,実装フィールドを早期に整備することにより,取組の加速化を図る。

これにより、ビジネス環境が変容し、新たなビジネス環境の創出につなげる。

ビジネスモデル確立に向けての課題

- ・中小事業者にとってMaaS とは何かイメージがつかない。
- チャレンジには敷居が高い。
- スマートなサービスを生み出すための資源(データ)がない。あるいは整理されていない。
- ・自動運転車両が開発されても, 走行させるための専用レーンや 通信環境,磁気マーカーがない。

具体的取組

プレーヤーの拡大

地域バス事業者、その他商業 事業者等における GTFS データ の整備を促進

交通系データの活用・蓄積

交通系データ、インフラ系データ等のモデル検討を進め活用・蓄積

道路空間の環境整備

実証実験により具体的課題を 掘り起こし、実装に向けて更 なる検討

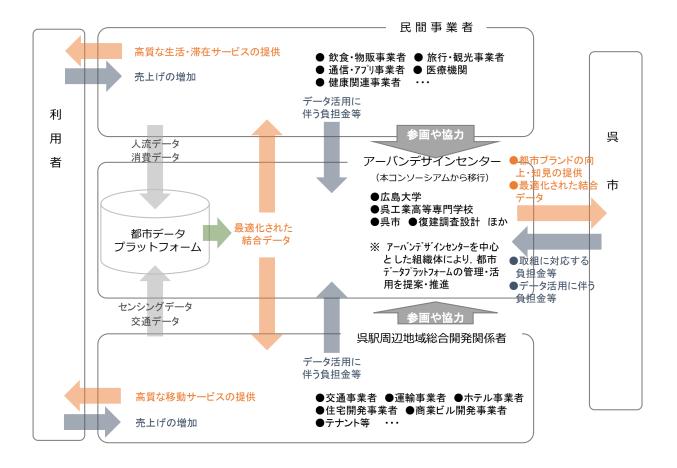
実装フィールドの早期整備(データ蓄積・道路空間環境整備)により、取組を加速

取組の実現によるビジネス環境の変化

MaaSの実現

- ●誰もが便利に移動可能となり,賑わいあるコンパクトシ ティ,特色ある地域観光拠点 に人が集まる。
- ●各エリアの特性に応じた「エリア広告」が来訪者にリアルタイムで提供される。

都市データプラットフォームの構築


- ●安定的なデータ活用が可能 となり、データ駆動型の新た なサービスが生まれる。
- ●データ駆動型サービスが展開され、エリアの価値が高まる。

次世代モビリティの導入

- ●持続可能な公共交通体系が 確立され,移動弱者の外出が 増える。
- ●「動く店舗」など、新たなビジネスの幅が広がる。

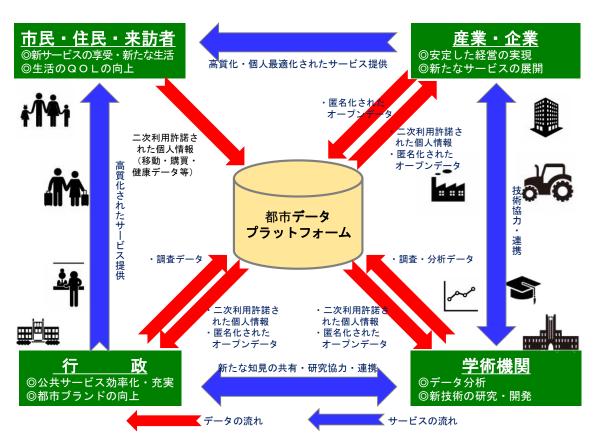
防災機能の強化

- ●自動運転に向けた道路空間の環境整備により、災害時でも混雑しない交通体系を確保し、安心な ビジネスフィールドを提供
 - ビジネスモデル組立に向けた取組

■ ビジネスモデルイメージ

10. データ利活用に関する検討

10.1 活用を想定するデータ


活用を想定するデータを以下に示す。 (再掲)

■ 都市データプラットフォームへの格納が想定されるデータ(再掲)

データ分野	活用が想定される データ	活用が想定される サービス分野
交通	GTFSデータ【国交省 標準化済】, ETC2.0データ, 道路交通情報, 歩 行者情報	ルート検索・乗り物予約・決済、渋滞情報提供
防災	気象データ、災害・道路交通情報、水位・潮位データ、避難所データ、避難状況データ、緊急物資データ	災害情報提供,避難情報提供,避難所活動支援
エネルギー	電力・ガス利用データ	エネルギー利用最適化、省エネ意識の醸成
セキュリティ	GPSデータ	子ども・高齢者の見守り
インフラ 維持管理	3 Dマップデータ, 地盤情報データ, 設計データ, 点検・更新データ, G I S データ	公共施設維持管理の効率化・最適化
観光	人流動態データ, 観光地情報, 飲食・宿泊施設情報, 多言語情報, 集客データ	観光情報検索、宿泊施設検察・予約・決済
健康	成長記録データ、検診データ、診察・投薬データ	健康リスク評価, データヘルス, 遠隔地医療
教育	児童・生徒データ, 教職員データ, 学習記録情報, 学力データ	学習支援,教育体制の効率化(遠隔教育等)
生活利便性	人口データ、マイナンバーデー タ 、 COVID-19接触情報	行政サービスの効率化
農業	経営データ、栽培データ、栽培環境データ、田畑や有害鳥獣などのセンサデータ	農業生産・経営の効率化・最適化
物流	貨物動態データ、倉庫利用データ	輸送の効率化・最適化
生産性	生産量データ、在庫データ	生産の効率化・最適化 新商品開発マッチング
産業振興	購買データ、来客データ、店舗立 地データ	販売促進・最適化、出店計画支援

10.2 データ利活用のスキーム

データを利活用することでメリットが得られるステークホルダーを設定し、都市データプラットフォームのデータ利活用による各ステークホルダーのメリット、ステークホルダー間のサービスの流れ、データの流れを検討しデータ利活用のスキームを作成した。

■ データ利活用のスキーム

11. 横展開に向けた検討

「取組の特徴」における汎用性は以下のとおりであり、呉市特有の問題に対応する取組であるが、程度の大小はあるが全国的な問題に対応する取組である。

また、公・民・学により連携組織を組成して、各種のまちづくり課題に取り組んでいる事例も増加しつつあることから、多様な分野からの参画により多様なネットワークを活かした 取組の展開も行いやすいと考える。

呉市スマートシティによる先行的な取組によりノウハウの蓄積とモデル化を進め、全国に 展開を図る。

■ 各取組の汎用性の特徴・留意事項

	■ 谷以祖のが用住の特徴・由息争項
取組	汎用性の特徴・留意事項
【取組①】	都市拠点内の公共交通問題は、全国各地で生じており、一般的な新技
次世代路面電車の実	術導入により問題解消を図ることから汎用性は高い。
装を通じた持続可能	・次世代路面電車の導入を検討する中心部の幹線道路は、6車線(片
な交通体系の再整備	側3車線)の幅員を有する道路が多いことから、専用レーンの設置
	等による自動運転バスは比較的導入しやすい環境であるが、自動運
	転技術の向上との関係によるが、安全な走行環境の確保が必要であ
	る。
	・これまでに2回の次世代モビリティ導入に向けた社会実験を実施
	しており,次世代モビリティに対する市民の認知度・受容性は高ま
	ってきていると考えられる。安全なモビリティであることを市民に
	理解してもらう取組が必要である。
【取組②】	本市の特徴である狭隘道路が複雑に入り組んでいる斜面市街地は全
斜面市街地における	国各地に存在することから汎用性は高い。
高齢者の生活支援	・電動小型モビリティは満充電からの走行距離が比較的短いものが
	多いが、本市の斜面市街地は、平坦地から急勾配で斜面地から平坦
	地(バス路線等)までは比較的短距離であることから、実用性が高
	いと考えられる。斜面市街地からバス路線等までが長距離の場合
	は、車両性能による運行便数があることに留意が必要である。
	・2021年の実証実験では、地元タクシー会社の協力により運転手の提
	供が得られたことで安全な環境で実証実験が実施できた。一般の方
	でも運転は可能であるが、狭隘な道路を運転することから、地元協
	力が得られるかどうかに留意する必要がある。
【取組③】	公共・民間のビックデータ化は一般化されつつあり, 行政課題解消,
都市データプラット	ビジネスモデル構築への活用の汎用性は高い。
フォームの構築	・都市データプラットフォームの管理・活用の提案・推進は、アーバ
	ンデザインセンターを中心とした組織体が担うと計画している。ア
	ーバンデザインセンターは、リーディングプロジェクトに位置づけ
	ている「呉駅周辺地域総合開発」で設立が示され実現性は高い。
	・都市データプラットフォームは情報管理等の問題との関係が深い
	側面もあることから、公共公益的な組織体が関与することが望まれ
	る。

少子化への対応 共通の都市課題を抱える都市への展開 技術的知見を活用できる都市への展開 観光消費額の拡大 都市間連携・全国展開 高齢化への対応 公共交通の維持 **懇**の共有 知見の提供 連載のブラットフォーム ②力通形な別・ネットワーク 公・民・学の連携ネットワーク 批 公・民・学の連携組織である アーバンデザインセンターを設立 アーバンデザインセンターの 多様なネットワークを活かし エリア内の取組を情報交換 実験の実施 ・検証 知見の (R3 広島大学 藤原研究室ほか) グリーンスローモビリティ 実証実験 交通まちづくりに向けた交通社会実験 のエリア内実証 都市データプラットフォームの構築を 見据えた多分野へのサービス実装 燃料電池バス 実証実験 (R2 呉市) 自動運転/《ス実証実験 (R3 呉市) エリア内モデルの構築 【商店街/アーケード】 [市街地] [斜面地]

■ 呉市スマートシティの横展開イメージ

呉市スマートシティコンソーシアム構成員である広島大学, 呉工業高等専門学校では, 交通に関する先進技術導入の研究を行っており, R2年度には2大学, 呉市が連携して, 以下の実証事業を実施した。その概要とアンケート結果(速報)を以下に示す。

検証内容

(1)「世代都市内モビリティの接続性に関する検証」

都市内交通としての自動運転車両や GSM 等との円滑な接続機能の検証 (実証主体:広島大学, 呉工業高等専門学校)

(2)「自動運転バス走行実験」

次世代モビリティの導入を軸とした新たな公共交通体系の構築に向けて、市民の皆さま に無料で自動運転バスの公道走行を体験していただく社会実験

(実証主体: 呉市)

(1)世代都市内モビリティの接続性に関する検証

1) 実証実験の概要

実施期間

Aルート:本通付近~清水・三和町

令和2年11月28日~12月4日 Bルート: JR呉駅~清水・三和町 令和2年12月5日~12月11日

幅員の狭い地域内道路を走行することから、コンパクトな車体であるグリーンスローモビリティを実験車両(YAMAHA 製4人乗りカート)とした。

実験車両

2) 実証実験結果(速報)

実証実験で取得したアンケート結果のうち、新しいモビリティ導入に関する内容の概要を 示す。

○グリーンスローモビリティのイメージ

グリーンスローモビリティのイメージは、「環境に優しい」や「小回りがきく」等のイメージが高く、「夏や冬の快適さ」や「悪天候時の快適さ」等乗車環境に関するイメージが低い。

■グリーンスローモビリティのイメージ

	回答者数					割合						
	1	2	3	4	5		1	2	3	4	5	1+2
	そう思う	やや	どちらで	あまり	思わない	合計	そう思う	やや	どちらで	あまり	思わない	合計
	() ()	そう思う	もない	思わない	70.4778.0		()/6 /	そう思う	もない	思わない	75/17/20	ыні
環境にやさしい (Green)	121	30	9	4	0	164	73.8%	18.3%	5.5%	2.4%	0.0%	92.1%
解放感がある(Open)	90	41	17	9	2	159	56.6%	25.8%	10.7%	5.7%	1.3%	82.4%
風景を楽しめる(Slow)	84	38	20	10	6	158	5 3.2%	24.1%	12.7%	6.3%	3.8%	77.2%
安全性が高い(Safety)	42	40	41	25	8	156	26.9%	25.6%	26.3%	16.0%	5.1%	5 <mark>2.6%</mark>
小回りがきく(Small)	100	44	12	4	2	162	61 .7%	27.2%	7.4%	2.5%	1.2%	88.9%
静か・騒音がない	105	37	15	3	1	161	65.2%	23.0%	9.3%	1.9%	0.6%	88.2%
先進的である	69	42	33	11	4	159	43.4%	26.4%	20.8%	6.9%	2.5%	69.8%
乗り心地がよい	20	45	57	22	4	148	13.5%	30.4%	38.5%	14.9%	2.7%	43.9%
乗り降りがしやすい	51	63	31	8	1	154	33.1%	40.9%	20.1%	5.2%	0.6%	74.0%
荷物が運びやすい	53	44	35	19	4	155	34.2%	28.4%	22.6%	12.3%	2.6%	62 .6%
悪天候時にも快適	19	24	39	49	22	153	12.4%	15.7%	25.5%	32.0%	14.4%	28.1%
夏や冬にも快適	18	21	43	52	18	152	11.8%	13.8%	28.3%	34.2%	11.8%	25.7%
登坂しやすい	48	41	38	19	8	154	31.2%	26.6%	24.7%	12.3%	5.2%	57.8%
速度にストレスがない	39	35	49	28	8	159	24.5%	22.0%	30.8%	17.6%	5.0%	46.5%
道路混雑が発生しにくい	36	26	46	31	18	157	22.9%	16.6%	29.3%	19.7%	11.5%	39.5%
密閉感がない	68	51	32	5	3	159	42.8%	32.1%	20.1%	3.1%	1.9%	74.8%
気軽に利用できる	50	47	44	12	4	157	31.8%	29.9%	28.0%	7.6%	2.5%	61.8%
子供の反応が良い	37	46	41	12	3	139	26.6%	33.1%	29.5%	8.6%	2.2%	59.7%
高齢者や障がい者が利用しやすい	74	52	22	9	5	162	45.7%	32.1%	13.6%	5.6%	3.1%	77.8%
暮らしやすくなる	66	52	31	10	3	162	40.7%	32.1%	19.1%	6.2%	1.9%	72.8%

○グリーンスローモビリティの商店街への乗り入れについて

グリーンスローモビリティがれんがどおりに乗り入れることについては、危険に感じる ことはなく賛成する回答者が約7割であり、概ね理解を得られている。一方で、自由意見 では危険性を感じている回答者や必要性を感じない回答者も一定数存在する。

今回の実験については、良い取り組みであるの印象が強い。

■グリーンスローモビリティ走行時の状況・商店街への影響

	回答者数						割合					
	1	2	3	4	5	合計	1	2	3	4	5	1+2
	そう思う	ややそう思う	どちらでもない	あまり思わない	思わない	TaT	そう思う	ややそう思う	どちらでもない	あまり思わない	思わない	合計
危険や不安は感じなかった	168	15	11	19	29	242	69.4%	6.2%	4.5%	7.9%	12.0%	75.6%
れんがどおりの通行に影響はなかった	159	20	23	14	25	241	66.0%	8.3%	9.5%	5.8%	10.4%	74.3%
商店街に来るときの利便性が良くなった	159	22	40	12	8	241	66.0%	9.1%	16.6%	5.0%	3.3%	75.1%
まちの魅力が向上した	126	31	47	18	14	236	<mark>5</mark> 3.4%	13.1%	19.9%	7.6%	5.9%	66.5%

■今回の実験の印象

	回答者数	割合
良い試みだと思う	194	79.8%
やや良い試みだと思う	24	9.9%
どちらでもない	18	7.4%
やや良い試みではないと思う	2	0.8%
良い試みではないと思う	5	2.1%
合計	243	100.0%

(2) 自動運転バス走行実験

1) 実証実験の概要

実施期間

令和3年1月22日~1月24日

自動運転バス走行実験について 乗車モニター募集

(予約制)

実験期間 令和3年1月22日(金)~1月24日(日) 10:00~16:30 (呉市役所前からの最終便は16:00発)

今回の自動運転バス走行実験へのご参加は予約制となります。 自動運転バスへ乗車ご希望の方は、呉市ホームページ内予約サイトより事前予約をお願いいたします。

- ・呉市役所〜呉駅前〜呉市役所というルートのため、呉駅前停留 所で乗車し、呉駅前停留所で降車する方は、呉市役所停留所で一度降車し、次の便に乗っていただきます。 ・当日事前予約がない方は、呉市役所停留所の係員にお申し付
- けください。事前予約がない場合も乗車いただくことは可能ですが、 満席等の理由によりご乗車をお断りする場合があります。
- ・1便8名まで乗車可能です。※新型コナウイルス感染拡大のため、座席数を減らして運行します。
- ・小学生以下の方は保護者の同伴をお願いいたします。
- ・受付にて同意書への署名と検温をしていただきます。同意書に同意していただけない場合や37.5度以上の発熱がある場合はご乗 車いただけません。
- ・ご乗車の方にアンケートを実施します。ご協力をお願いいたします。

運行ダイヤ

1周するのに必要な時間は約10分です。

時	市役所前 (中央公園)	呉駅前
10時	00,30	05,35
11時	00,30	05,35
12時	_	_
13時	00,30	05,35
14時	00	05
15時	00,30	05,35
16時	00	05

呉駅前停留所

予約方法

1月13日(水)より呉市ホームページ内の予約 サイトにて受け付けいたします。乗車する日時・停留所を選び予約してください。運行時刻の15 分前まで予約することが可能です。

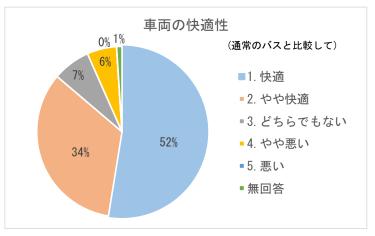
乗車する方は乗車予約時間の10分前までにお 越しください。

> 呉市HP 予約はこちら

お問い合わせ 呉市都市部呉駅周辺事業推進室 Tel: 0823-25-3558

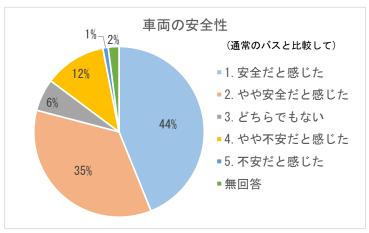
※ この取組は、KUREスマートシティコンソーシアムの取組等の一環として、広島大学及び 呉工業高等専門学校から、実験への助言、実験後の検証等について御協力をいただいています。

自動運転バス (日野ポンチョ改造車)

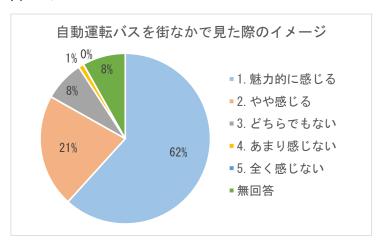

実験車両

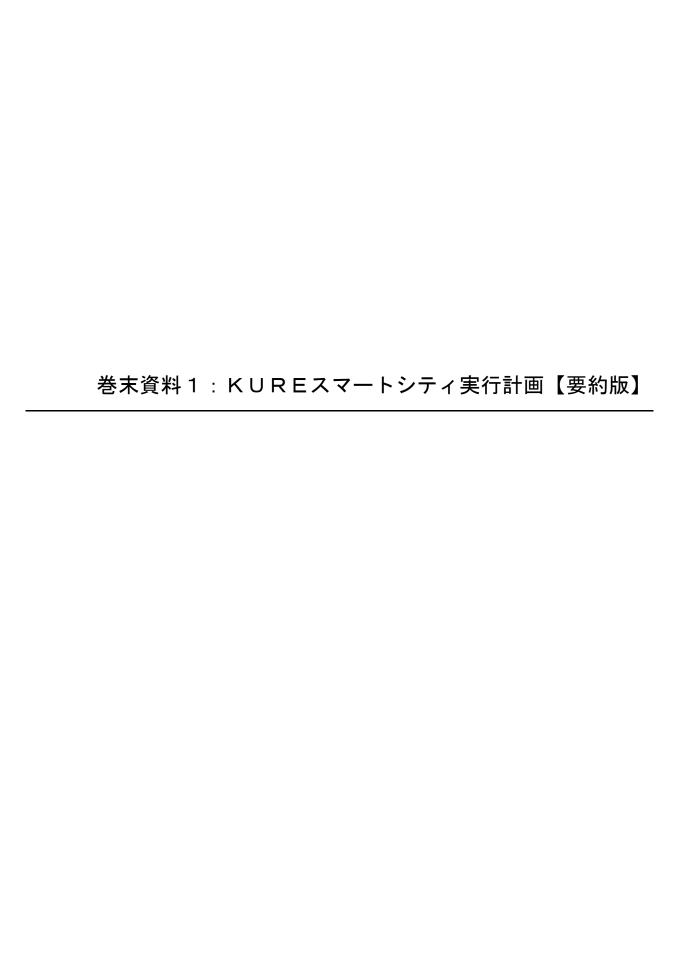
2) 実証実験結果(速報)

実証実験で取得したアンケート結果のうち、新しいモビリティ導入に関する内容の概要を 示す。

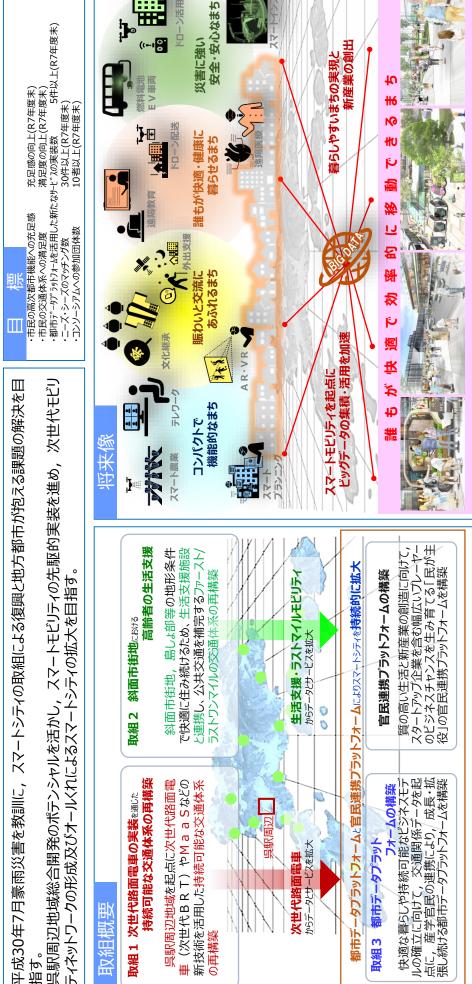

○車両の快適性について

通常のバスと比較して、やや悪いと感じる方が若干いるが、8割強の方は快適と感じている。


○車両の安全性について


通常のバスと比較して、やや不 安と感じる方が約12%である が、約8割の方は安全と感じてい る。

○自動運転バスを街なかで見た際のイメージ


街なかで自動運転バスが走行 しているイメージは約8割の方 は、魅力的に感じている。

には出 KUREスマートシティモデル事業実行計画

呉駅周辺地域総合開発のポテンシャルを活かし,スマートモビリティの先駆的実装を進め,次世代モビ

2029年度 吳駅周辺地域を起点に自動運転を拡大 生活支援MaaSの拡大 蓄積データの拡大 3D都市モデルの整備 構築完成 自動運転 MaaS実装 2025年度 生活支援 システム ~2024年度 斜面市街地生活支援MaaS構築 都市データプラットフォームの構築 取組①、②の実証データ蓄積・ 次世代モビリティ導入実証事業 自動運転導入実証事業 自動運転道路環境整備 GTFSデータ整備〉2021年度実装 11/11 盟の ※官民連携プラットフォームの 取組(R3~)により 今後更に体制を拡充 ※ 将来的にアーバンデザイセンターへ移行予定 呉工業高等専門学校 **KUREZZ-** *Ly7-1* 広島大学 コンソーシアム 复建調査設計 亚 株式会社

呉駅周辺地域総合開発(第1期開発)の完了見込年 実証事業により改善を行い各取組を実装し, 引き続き 度(2024年度末), あるいは2025年度末を目途に,

(市街地・斜面地から島嶼部・都市) ◆ 交通社会実験 <継続実施>

問へと順次拡大)

● 都市データプラットフォームの構築 ●3D都市モデルの整備

ロソンーッアムむのアーバンドザインセンターへの物行。 ● スマートシティくれ 官民連携プラットフォームの構築

● 各種サービスの実証実験の展開 構成員の拡充

巻末資料	¥2:	KUR	Eスマ	7	シティ	[,] 実行計ī	画【概要版]

事業のセールスポイント

呉駅周辺地域総合開発のポテンシャルを活かし,スマートモ**ビリティの先駆的実装**を進め,**次世代モビリティネッ** スマートシティの取組による復興と地方都市が抱える課題の解決を目指す ワークの形成及びオールくれによるスマートシティの拡大を目指す。 平成30年7月豪雨災害を教訓に,

本実行計画 のゴジョン

呉駅周辺地域を起点とした スマートシティの推進による都市の リ・デザイン と ブランドカ の向上

平成30年7月豪雨災害からの復興に向けて

災害時BRTにより呉1.0から 広島呉道路に進入するバス 交通の強化・確保・渋滞対策

公• 用•

「広島・呉・東広島都市圏 による総合訓練の様子 災害時交通マネジメント検討会」 学連携の継続・拡大

業・経済の復興

受細1

呉駅周辺地域総合開発の一環として

[広島県呉市] 対象区域は呉市全域(緑色部分)とします スマートシティを市全体に拡大するため 人口:217,289人(R3.1末) 豪雨災害からの復興に向けて 対象区域の概要 再活用を目指す旧そごう呉店跡地 位置図

次世代路面電車 からデータとサービスを拡大

誰もが快適で効率的に移動できるまち

災害に強い安全・安心なまち

安全・安心

交通基盤

効率的 都市経営

コンパクト
に機能的な
まわ

賑わいと交流にあふれるまち 交流促進

誰もが快適・健康に暮らせるまち

快適・健康

磢

都市

и 6

വ

₩ 袻

市ダ町

欰

綑 弹 **₩** ₩ 舳 ₩

島しょ部等の地形条件で 生活支援施設と

決適に住み続けるため、

斜面市街地,

斜斜面市街地における

取組 2

詩続可能な交通体系の再構築 呉駅周辺地域を起点に次世代路面電車 (次世代BRT)やM a a S などの新技術 を活用した持続可能な交通体系の再構築 次世代路面電車の実装を通じた

1携した公共交通を補完するファースト ウンマイルの交通体系の再構 生活支援 ヘラストマイルモビリティ □ 都市拠点 □ 地域拠点 0

鄂市データプラットフォーム と **官民連携プラットフォーム** にょりスマートシティを 持続的に拡大

やのドータとサーバスを拡大

官民連携プラットフォームの構築 都市データプラット

決適な暮らしや持続可能なビジネス 場成長・拡張し続ける都市データプラッ タを起点に,産学官民の連携により, モデルの確立に向けて, 交通関係デ-受制3

トフォームを構築

て,スタートアップ企業を含む幅広い プレーヤーのビジネスチャンスを生み 質の高い生活と新産業の創造に向け 育てる「民が主役」の官民連携プラットフォームを構築

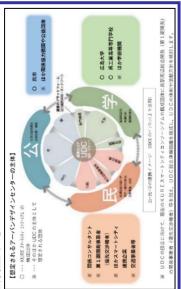
(KUREX Vートツー・コンソーシアム) ~「スマートシティくれ」の推進による都市の リ・デザイン と ブランドカ の向上〜 KUREスマートシティモデル事業実行計画

スマートシティの目標(KPIの設定)

『汝世代モグリティネツトワークの形成』 ъ В

取組の方向① 次世代路面電車の実装を通じた持続可能な交通体系の再構築 充足感の向上 -0.3bt | 満足度の向上 10.3% 取組の方向② 斜面市街地における高齢者の生活支援 主要都市にふさわしい都市機能が充分であると感じる人の割合) 市民の高次都市機能への充足感 市民の交通体系への満足度

『官民連携によるスマートシティの拡大』


取組の方向③ 都市データプラットフォームの構築	זובו	
都市データプラットフォームを活用した新たなサービス	ı	7 1/1 1/1
の実装数(実験環境及びオープンデータの活用によるものを含む。)		エンバエ
取組の方向④ 官民連携プラットフォームの構築		
ニーズ・シーズのマッチング数	١	「竹制08
コンソーシアム(移行後はアーバンデザインセンター)の参加団体数	4耆	「以春01

運節体制

目標値

ていくため,多様なステークホルダーの連携組織として,「アーバ ◎現在,組成している「KUREスマートシティコンソーシアム」を 母体として,現在の取組を持続的に広げ,新たな価値を創造し続け ンデザインセンター」を設立する。

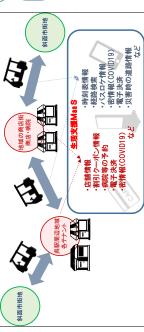
ターを中心に, 官民連 トフォームに格納・蓄 積し,多分野への展開 夕を都市データプラッ 検討,高質なサービス 携により,多様なデ の開発を目指す。

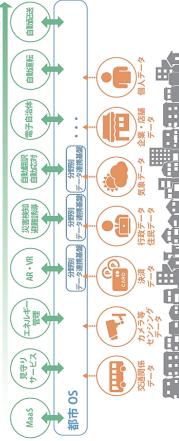
導入技術

次世代路面電車の実装を通じた持続可能な交通体系の再構築

自動運転車 ◎ 次世代モビリティ(次世代BRT, 両等)やMaaS等の新技術を導入

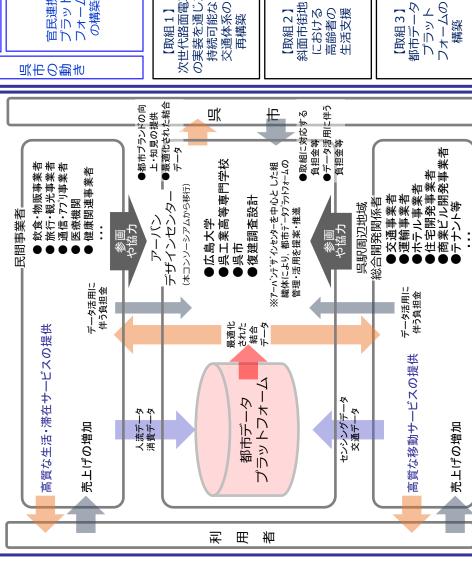
■斜斜面市街地における高齢者の生活支援

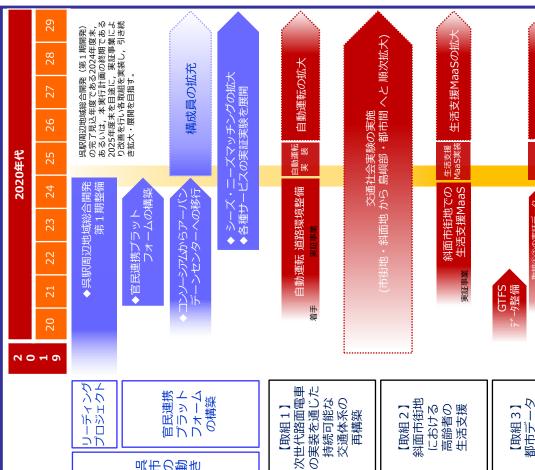

通事業者,呉駅周辺地域や地域の商店街のテナ ワンマイルのモビリティの導入とあわせて、交 ント・各商店・病院等と連携して,情報発信,


青報発信等の機能を win-winの関係とな 育する, 利用者と店 る"生活支援MaaS" COVID19関連の密 舗などが両者とも 予約,電子決済,

都市データプラットフォームの構築

- 交通糸データ, インフラ系データを中心としたデータマネジメント (データストア, API) を構築 呉駅周辺地域において整備を目指すバスターミナルにおいて,
- これを起点に、地域間・サービス間で拡張された「呉市・都市 データプラットフォーム」を構築





- ビジネスモデル

■ スケジュール

○アーバンデザインセンターを中心に,官民連携により,多様なデータを都市データプラットフォームに格納・蓄積し,多分野への展開検討,高質なサービスの開発を目指す。また,交通事業者をはじめとする各種事業者は,都市データプラットフォームのデータを活用して,新サービス提供などによる新たなビジネスモデルの構築を目指す。



蓄積データの拡大

システム構築完成

3 D都市モデルの整備

スマートシティ実行計画

令和3年3月19日作成

	KUREスマートシティコンソーシアム			
a 地区単位(数ha~数十ha程度) b 複数地区をまたぐ区域(例:ニュータウン) ⓒ 市町村全域 d その他(複数市町村をまたぐ区域、鉄道沿線等)				
	市町村等名	呉市		
代表	者役職及び氏名	呉市長 新原 芳明		
	部署名	都市部		
	担当者名	林 通宏		
連	住所	呉市中央4丁目1-6		
	電話番号	0823-25-3558		
<i>)</i>	FAX番号	0823-25-3227		
	メールアドレス	kureeki@city.kure.lg.jp		
	事業者名	復建調査設計株式会社		
代表者役職及び氏名		代表取締役社長 來山 尚義		
	部署名	総合計画部地域計画課		
	担当者名	藤田 章弘		
	住所	広島県広島市東区二丁目10-11		
連	電話番号	050-9002-1755		
	FAX番号	082-506-1897		
		a-fujita@fukken.co.jp		
	b ⓒ d 代 連絡先 代 連絡先	a b © d 代		

※民間事業者等:民間事業者及び大学・研究機関等

都市の リ・ドザイン と ブレンドカ の向上 「ストートシナイへれ」の推進による

KUREスマートツドィモデル事業実行計画

スしREストートツドィコソンーツドイ

第1章 基本事項 背景

1.1 対級区域

呉市は,瀬戸内海のほぼ中央部,広島県の南西部に位置し,瀬戸内海に面する陸地部と倉橋島や安芸灘諸島などの島しょ部で構 成みたている。 市域面積は352.81k㎡で,陸地部と島しょ部(倉橋島,鹿島,下蒲刈島,上蒲刈島,豊島及び大崎下島)は,架橋により陸続きと なっており,東西方向に約38.1km,南北方向に約33.1kmと広がる市域は,瀬戸内海で最も長い約300kmの海岸線を有している。 呉市は広島市に近接し, 当圏域における連携中枢都市機能の一部を担っている。

地形的には,陸地部の北部に灰ヶ峰,野呂山を始め,標高300mから800m前後の山が連なり,市域全体を通じて平たん地が少 なく, 市街地や集落が分断された形となっている。

1.2 区域の課題・現状

1) 呉市の課題 (1

① 子育て・教育分野

少十代への対応

- 〇子育てや教育にかかる経済的な負担や子育てへの不安、仕事との両立の悩みなど様々な要因が、若い世代の結婚から妊娠、出産、子育てまでの希望の実現を難しくしている。
 - 〇若い世代が安心して子どもを産み育てることができる, まちづくりが必要となっている。

支援教育の充実, 1 C T を活用した教

〇また,いじめや不登校への対応,

ばす教育が求められている。

育の推進などが必要となっている。

③ 市民生活・防災分野

市民主体のまちづくり

- ○地域の課題解決に対する市民ニーズは多様化し、行政だけでの対応が難しくなっている。また、人口減少や高齢化などに伴い、まちづくり活動の担い手や参加者が減少している。
- Oこのような中、多様な人々による協働により、自主的で自立したまちづくりを実現するとともに、全ての市民が安心して暮らし、活躍することができる地域社会の形成が求めれている。

② 福祉保健分野

〇グローバル化や情報化など, 社会が急

1 CT教育の推進

激に変化する中で,変化に向き合い,新たな価値を創造する力など,子どもたちの未来につながる資質や能力を伸

- | 〇人口のボリュームゾーンが高齢側へシフトしており,全国に先駆けて高齢化が進行し,高齢化率30%台半ばの高い水準となっている。
- Oこのため、必要に応じて医療や介護 サービスなどが提供され、住み慣れた 地域で安心して生活できるまちづくり の実現が求められている。

4 文化・スポーツ分野

伝統文化の総承

○文化芸術に参加(鑑賞)する機会の拡充や文化財の適正な保存と活用,祭りなどの地域の伝統文化の継承が課題となっている。

当該災害で多くの市民が避難指示後も 避難行動を起こさなかったことへの取

〇平成30年7月豪雨災害を教訓として,

防災機能の強化

避難環境の改善などについての検討が

必要となっている。

組や気象情報・避難情報の周知方法,

健康づくりの推進

〇市民の健康づくりや高齢者のフレイル 予防, 呉市が全国のモデルとなった。 健診・医療情報等の分析に基づき, 効 果的な保健事業を提供するデータヘル スなどの推進などにより, 市民の健康 寿命の延伸を図っていくことが求められている。

スポーツ活動ニーズの対応

- 〇子どもから高齢者まで,それぞれのライフステージに応じたスポーツ活動のニーズが多様化している。
 - 〇このような中, 指導者の高齢化やその後継者不足, トップアスリートの育成などが課題となっている。

区域の課題・現状 . ผ

() 呉市の課題

産業分野 (D)

経営・生産基盤の強化

- 材確保も難しい状況が続いており、経 営基盤の強化や事業承継が課題となっ 〇市内中小企業・小規模企業では, 人口 減少や海外との競争が激化する中,人 ている。
- よる生産基盤の脆弱化や価格の低迷な 生産者等の減少などに どによる収益力の低下などが課題と 〇農水産業では,

観光消費額の拡大

返し訪れる観光客, 一人当たりの消費 額を増加させることなどが課題となっ 〇市内の観光振興に向け、滞在型や繰り

都市基盤分野 (0)

公共交通の維持

公共へうの適切な維持管理

が増加しているものの、公共交通利用 を始めとする公共交通を適切に維持し 〇また、高齢化の進行により、交通弱者 者は総体的に減少しており,生活交通 〇人口が減少する中で, 市街地において も人口密度の低下が懸念されている。 ていく必要がある。

活や経済活動に大きな影響を及ぼした。

老朽化する公共インフラの適切な維持

管理の推進が必要となっている。

〇この教訓を踏まえ、道路や橋梁など、

や公共交通機関が被害を受け, 市民生

〇平成30年7月豪雨災害では,

行政経営分野 ∞

住民サービスの維持向上

- ○人口減少や少子高齢化が進む中で, 新 たな行政需要に的確に対応していくこ とが求められている。
 - 〇このため、健全な財政運営や職員数の 適正化,公共施設等の更新,統廃合, 長寿命化などを進める必要がある。

高速通信網の整備

〇ICTが急速に進歩する中,高速通信 網の未整備地域があり,市民生活や企 業活動等に影響が出ている。

環境分野

温室効果ガスの削減

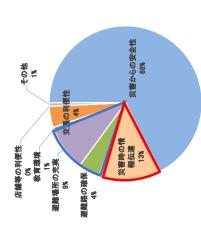
- である"26%"を大きく下回っている。 〇温室効果ガス排出量は, 平成25年度か おり, 令和12年度までの中期削減目標 **ら平成28年度で0.1%削減に留まって**
 - できる人材を育成する環境教育・環境 なった温室効果ガスの排出削減に向け た取組の推進や環境に配慮した行動が 〇このため、市民や企業などが一体と 学習の充実等が必要となっている。

ごみの減量化推進

- 〇市内のごみの減量化については、指定 ごみ袋制度(ごみの有料化)導入以降 は減少傾向にあったが,近年,おおむ ね横ばい状況が続いている。
- きないことから新たな施策の展開が必 要となっている。 〇今後についても,大きな効果が期待で

(2) 平成30年7月豪雨災害の教訓

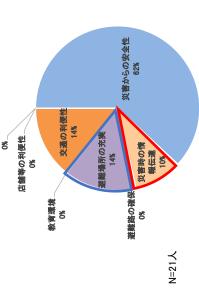
- 〇呉市では,平成30年7月豪雨災害により,人的被害や家屋の倒壊,断水や浸水,土砂の流出, 交通ネットワークの遮断など甚大な被害を受けた。
- 〇特に,土砂災害により,市内幹線道路が通行止めとなり,市内各所で深刻な渋滞が発生した。 このような中, JR代行バスが緊急通行する災害時BRTが運行され,市民や通勤者の足を 確保し、公共交通の必要性が再認識された。



災害時BRTにより呉1.0から広島呉道路に進入するバス

ケート調査(天応・安浦地区)では、今後の災害対策への要望として, 〇平成30年7月の豪雨災害後に実施した住民アン

- 口災害時の情報伝達機能の充実
- 口避難場所の充実
- 口避難経路の確保


等を求める意見が多く、早急な対応が求められ

米京岩区

安浦 (中央,内海)

N=130人

平成30年7月豪雨からのまちの復旧・復興に向けた被災状況等調査業務 報告書より 安浦(中畑,下垣内,原畑)

1.2 区域の課題・現状

(3) 緊急性を増している課題 ~ 公共交通の維持

5

○ 公共交通利用者の減少と高齢化の進展

コロナウイルス発生の影響により、人の移動量が激減し、

新型

交通事業者の経営状況は厳しさを増しています。 次世代を見据えた公共交通ネットワークの再構築を加速さ[·]

6

る必要があり

CONID-19の影響により深刻度を増す公共交通の経営状況

中

市民生活に身近な公共交通(路線バス)の路線維持が難しい状況です。一方,運転免許返納者が増加しており,市民の移動手段を確保するためには,公共交通の維持は喫緊の課題となっています。

- 公共交通ネットワークの柱である市内路線バスは、1路線を除きすべて赤字で,うち1路線は,路線維持基準を下回る収支状況
- 高齢者の運転免許保有割合が増え,免許返納者が増加

十一観光航路 75.0% 30.2% パス・旅客船輸送人員前年対比率(令和2年/令和元年) 80.08 33.8% → 生活航路 45.2% 55.2% 21.1% 53.0% ➡─高速乗合バス 62.6% 54.5% 81.4% 79.4% →一般路線バス 97.4% 98.4% 91.2% 89.49 100.0% 80.0% %0.09 40.0% 673 648 480 200 9 200 300

45.0%

41.0%

77.9%

78.4%

J典)広島県警

出典)広島県資料

7月

6 H

5月

4月

3月

2月

%0.0

20.0%

呉市まちづくりのリーディングプロジェクト ~呉駅周辺地域総合開発~

〇現在,呉市では,「スマートシティ くれ」の実現に向けた,まちづくりのリーディングプロジェクトとして,呉駅周辺地域において,次世代モビリティや MaaSなどの先端技術の導入を見据えながら,鉄道やバス・航路の総合交通拠点となる駅前広場の再整備を中心とする総合開発を進めています。

呉駅周辺地域総合開発基本計画【令和2年4月】抜粋

■計画の目標

の手法や積極的な制度活用等により,居住機能や生活に必要な都市機能を誘導し、 呉駅周辺地域全体を総合交通拠点として捉え,市全体の交通まちづくりの起点 となる,次世代モビリティにも対応した機能整備を推進するとともに,官民連携 市内で最も人口と都市機能が高度に集積した,Society5.0 の実現に向けた先駆 的サービスが展開される次世代のまちなか居住エリアの創出を目指します

5 つのビジョンと取組内容

(ジョン1 交通まちづくりの起点となる"次世代型"総合交通拠点の形成 ①バス・タクシー・自家用車と歩行者を分離した利用しやすい駅前広場の整備 ②バス・鉄道・船など交通モード間の接続強化 ③新しい交通システムの積極的な導入

- 4年駅周辺地域を起点とした広域的な回遊ルートの形成

ビジョン2 市民と来訪者が憩い、賑わい、快適に移動できる駅前空間の創出

- ①駅・交通ターミナルと一体となった2階レベルの歩行空間
- 次世代モビリティの乗り入れ等広場空間の先進的な活用

ビジョン3 災害時にも頼りになる防災対応型交通拠点の形成

:ョン4 歩きたくなる・住みたくなる「心地よく過ごせるまちなか」の形成 駅前の賑わいを創出する複合施設の整備

- 複合施設への商業・賑わい機能,居住機能等の導入 複合施設へのパブリックスペースの設置

ビジョン5 「公・民・学」一体で課題を解決し続けるまちづくり

②市民参加による継続的なまちづくりの推進

基本理念

まちの魅力とひとの交流をつなぎ,広げ,新たな価値を創造する

「交通まちづくりとスマートシティの発信拠点の形成」

第2章 取組の方向性

新技術導入による都市課題解消のイメージ

新技術等の導入による呉市の課題解消の新たな展開イメージ 少子高齢化や地域活力の低下の諸課題に対して、

呉市の課題

導入する新技術等

1 0 T ネットワークの拡充

◆AI (人工知能) 少十代への対応

- ●安心して子供を産み育てられる就業環境創出●育児への精神的負担の解消●安全を守る見守り体制の強化

子育て 教育

- ●グルーバル化・情報化への対応 I CT教育の 推進
- 教育を受ける機会の地域格差の解消 ●GIGAスクール構想の実現
- ●医療・介護サービスの地域格差の解消●医療受診・介護の高齢者・家族の負担軽減●安全を守る見守り体制の強化

画幣化への 対の

福祉保健

少野

- ●データヘルスの継続的推進 ●高齢者の外出機会の拡大 健康づくりの 推進
- ●地域住民による主体的なまちづくり推進
 - 市民主体の まち近くり
- ●地域の防災力・消防力の強化●災害情報・避難情報のスムーズな伝達 防災機能の

防災分野 市民生活

- ●芸術文化に触れる機会の拡充
- ●地域文化の普及,情報発信の拡充 ●伝統文化の周知・継承 伝統文化の継承

文化・スポーツ

少野

- ●トップアスリートの育成 スポーツ活動コーズの対応
- ●スポーツへの参加機会の拡充 ●指導者の高齢化,後継者不足への対応

部市のSの構築

◆VK·AK·MK技能

(おのに) 新技術等導入の効果

- 〇子育て世代の経済的な負担や仕事との両立の悩みを解消するた め,テレワーク環境の充実等により働き方の多様化を実現。
- **扑** 〇子育て情報サイト等,子育て相談や診療施設予約,保育園 校情報等子育てに必要な各種情報発信サービスを提供
 - 〇子供たちが安全に安心して暮らすことができる,GPSやカメ う等を活用した見守リサービスの提供、
- 〇世界中と交流するグローバル授業を実現。遠隔授業等により 居住地等に関係なく,均等に教育を受けられる機会を確保。
- 〇個々の習熟度や環境等パーソナルデータに基づく最適な学習機
- 等に関係なく,移動することなく,均等な医療サービスを提供。 〇医療や介護分野で不足する人材を補う, AI機能を備えた先端ロ 〇電子カルテの共有,遠隔医療,遠隔投薬指導等により,居住地

◆モニタリング技術

(人工知能 ◆遠隔授業技術

- GPSやカメリ 〇高齢者が安全に安心して暮らすことができる, 等を活用した見守りサービスの提供 ボットサービスの提供
- 〇パーンナルデータモニタリングにより,オーダーメイド型の健 康管理・指導サービスを提供
- O高齢者の外出機会を促す, ファースト/ラストワンマイル移動 サービスの提供、

◆AI (人工知能)

◆モニタラング技術

◆先端モビリティ技

(人工知能)

Į¥

◆センシンが技術

►AI (人工知能)

◆トニタラング技能

◆遠隔医療技術

先端ロボット

- 〇3Dマップ及び各種都市データの融合・分析によるスマートプ ランニングの実現
- 避難 〇災害情報提供サービス,最適な避難誘導サービスの提供。 所情報の発信。感染症等の緊急情報の発信。
- 〇3Dマップを活用した災害予測の実現。VR技術を用いた防災 訓練機会の提供や災害ハザードマップの見える1

ドローン枚 防災Maa

◆VR·AR·MR技

代指ロボシ

- 〇消防活動等へのドローン,ロボットの導入による救助・消化活 動等の迅速化、効率化
- OVR,AR,MRによる地域の伝統・文化情報発信サービス, スポーツ観戦サービス,観光等疑似体験サービスの提供。
- O指導者不足を補う, VR, AR, MRによる指導サービスの提 供。また、トップアスリートによる指導機会の提供
- 10

新技術導入による都市課題解消のイメージ

〇情報分析による儲かる農業の実現。ビッグデータ・AIによる暗黙知の見える化。 ▲ ○ビッグデータ分析による観光サービスの最適化。新たなサービ 〇ドライバー不足を解消し、持続可能な公共交通を確保する自動 〇3 Dマップを用いた, インフラ施設の一元管理による, 維持管理作業の効率化の実現。 〇ゴミ排出量のモニタリング・分析による、ゴミ収集ルートの最 ○移動と一体となったシームレスな検索, 予約, 決済サービスの ┃ 〇3Dマップ及び各種都市データの融合・分析によるスマートプ ○最適で安定した電力供給に向けた。電力供給・消費モニタリン グ・分析サービスの提供。 モニタリング技術 ▲ ○外出機会の向上,回遊性の向上に寄与する,ファースト/ラス ■ ○燃料電池車両・E V 車両の導入による低炭素化の実現と災害時 〇感染症対策も踏まえた行政事務に関するデジタル・オンライン Oセンシング技術・カメラ等による, 人流・回遊データの収集 〇食品ロスの削減に向けた,ごみ排出量のモニタリングと分析 (わらい) 自動運転車両,ドローン,センシング技術,モニソの導入による農水産業の作業負荷の軽減と効率化. 申請サービス,キャッシュレスサービスの提供 における移動可能な電力供給基地の確保 新技術等導入の効果 トワントイルの移動サービスの提供 適化と回収状況の見える化。 分析サービスの提供 ランニングの実現 運転車両の導入。 サービスの提供 〇自動運転車両, ◆センツング技術 ◆自動運転技術 ◆観光Maaの ◆先縮 モアリアィ ◆AI (人工知能) ◆VI (人工知能) 導入する新技術等 1 0 T 朴 ト ト - ク の 拡充 ◆センシンが技能 ◆自動運転技術 ◆MaaS ・モニタリング ●ドローン技 ●付加価値が高く、質の高いサービスの提供●宿泊客・リピーターの確保。回遊性の向上 ●新しい生活様式に対応した働き方の推進 ●経営基盤の強化・事業継承●付加価値の高い農水産業の育成 ●スペートプルソニングの推進 ●持続可能な公共交通の確立 ●ごみの減量化●ゴミ収集の最適化・効率化 ●ドライバート配くの対応 ●温室効果ガス排出量削減 ●健全な財政運営 ●行政サービスの最適化, ●維持管理作業の効率化 ●交通弱者への支援 呉市の課題 公共インフラの 適切な維持管理 温室効果ガスの 住民サービスの 経営·生産基盤 ごみの減量化 観光消費額の 公共交通の 拡大 推進 都市基盤 産業分野 分野

■ ○ニーズとシーズのマッチングによる新サービスの提供。

◆VI (人工知能)

◆トッチング技術

●民間イノベーションの誘発促進

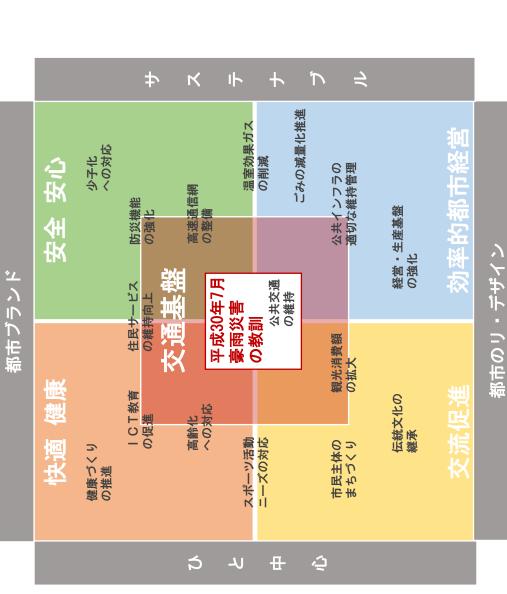
高速通信網の

行政経営

分野

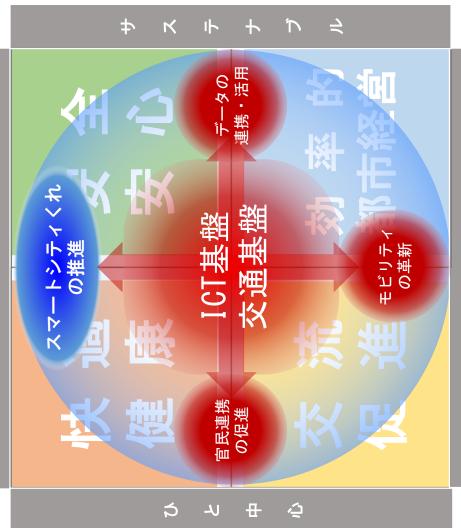
整備

維持向上


部下のSの構築

▲ O産・官・学連携による,新たなサービスの展開。

呉市スマートシティのターゲットとする課題と取組の方向性 2


呉市の諸課題に対して,官民連携により新技術等の導入により課題解決に取組む呉市スマートシティを推進する。先行取組として,平成30年7月豪雨災害の 教訓を踏まえながら,喫緊かつ重複的な課題である「交通基盤」分野をターゲットにICT基盤の実装を進め,各分野の領域で取組を展開・拡大していく。

【課題マトリクス】(ターゲットとする課題)

【取組の展開・拡大イメージ】

都市ブランド

都市のリ・デザイン

区域の回標 გ .

デジョン フェン

呉駅周辺地域を起点とした スマートシティの推進による都市の リ・デザイン と ブランドカ の向上

■次世代モビリティネットワークを形成

呉駅周辺地域を起点に,次世代モビリティ(次世代BRT,自動運転等)やMaaSなどの新技術を取り入れながら,次世 代モビリティネットワークを形成し,「誰もが快適で効率的に移動できるまち」の実現を目指します。

民連携によるスマートシティの実現 Ш

次世代モビリティネットワーク及びこれにより得られる移動データ等を軸に、都市データプラットフォーム等を活用した官 民連携の取組により、様々なサービスの効率化・高質化を図り、「災害に強い安全・安心なまち」、「コンパクトで機能的 なまち」、「誰もが快適・健康に暮らせるまち」、「賑わいと交流にあふれるまち」の都市像を実現するスマートシティを 指します

呉市が目指す5つの都市像

交通基盤

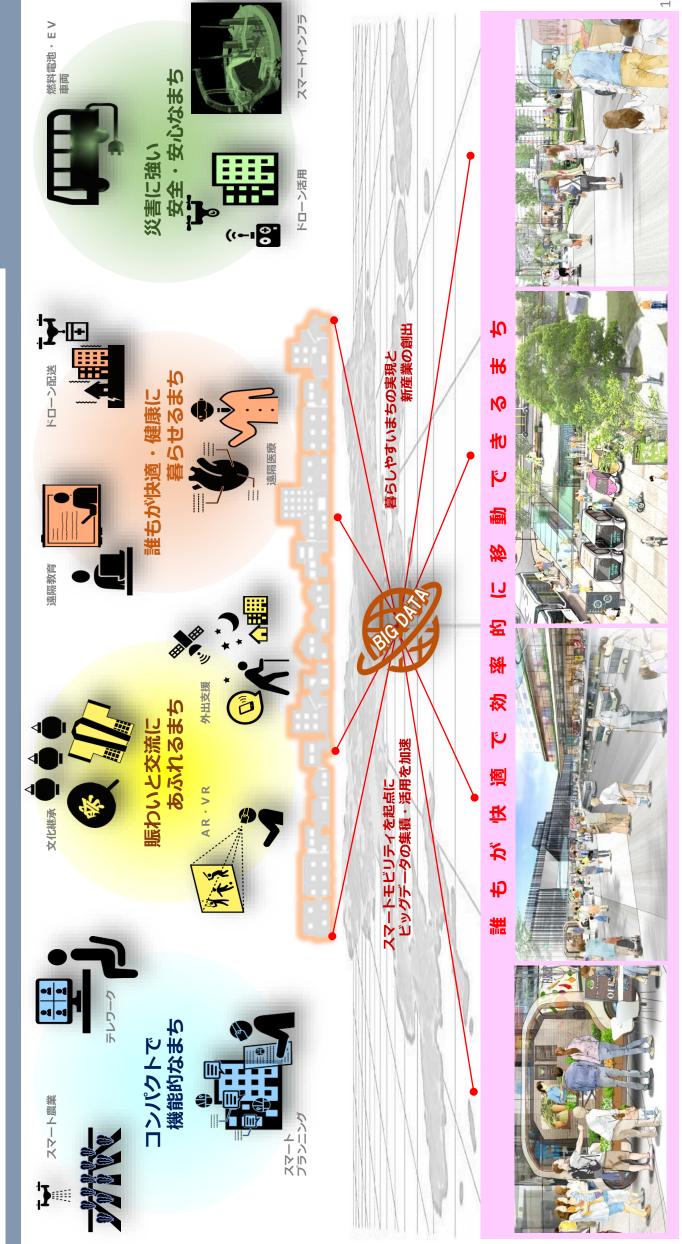
誰もが快適で効率的に移動できるまち

安心 安全

災害に強い安全・安心なまち

效 举 的都市 格斯

コンパクトで機能的なまち


健康 平崎

誰もが快適・健康に暮らせるまち

交流促進

間わいん
校消
に
あ
ふ
れ
る
ま
わ

解決すべき課題と取組の方向性 2 . 5

課題

教育分野

申福 新技術等導入の効果(ねらい)

〇子育て世代の経済的な負担や仕事との両立の悩みを解消するため,テレワーク環境の充実等により働き方の多様化を実現。

〇子育て情報サイト等,子育て相談や診療施設予約,保育園・学校情報等子育てに必要な各種情報発信サービスを提供。 〇子供たちが安全に安心して暮らすことができる,GPSやカメラ等を活用した見守りサービスの提供、 〇世界中と交流するグローバル授業を実現。遠隔授業等により,居住地等に関係なく,均等に教育を受けられる機会を確保。

〇個々の習熟度や環境等パーソナルデータに基づく最適な学習機会を提供。

〇電子カルテの共有,遠隔医療,遠隔投薬指導等により,居住地等に関係なく,移動することなく,均等な医療サービスを提供。

〇高齢者が安全に安心して暮らすことができる,GPSやカメラ等を活用した見守りサービスの提供。 O医療や介護分野で不足する人材を補う, AI機能を備えた先端ロボットサービスの提供

福祉保健

〇パーソナルデータモニタリングにより、オーダーメイド型の健康管理・指導サービスを提供

〇高齢者の外出機会を促す,ファースト/ラストワンマイル移動サービスの提供。

〇3Dマップ及び各種都市データの融合・分析によるスマートプランニングの実現

市民生活

分野

〇災害情報提供サービス,最適な避難誘導サービスの提供。避難所情報の発信。感染症等の緊急情報の発信。

〇3Dマップを活用した災害予測の実現。VR技術を用いた防災訓練機会の提供や災害ハザードマップの見える化。

○消防活動等へのドローン,ロボットの導入による救助・消化活動等の迅速化,効率化。 女化・スポーツ

〇VR,AR,MRによる地域の伝統・文化情報発信サービス,スポーツ観戦サービス,観光等疑似体験サービスの提供。 〇指導者不足を補う,VR,AR,MRによる指導サービスの提供。また,トップアスリートによる指導機会の提供。

〇情報分析による儲かる農業の実現。ビッグデータ・AIによる暗黙知の見える化。

〇自動運転車両,ドローン,センシング技術,モニタリング技術の導入による農水産業の作業負荷の軽減と効率化。

Oセンシング技術・カメラ等による,人流・回遊データの収集・分析サービスの提供。 〇移動と一体となったシームレスな検索,予約,決済サービスの提供。

〇ビッグデータ分析による観光サービスの最適化。新たなサービスの展開。

〇ドライバー不足を解消し,持続可能な公共交通を確保する自動運転車両の導入。

〇外出機会の向上,回遊性の向上に寄与する,ファースト/ラストワンマイルの移動サービスの提供。 〇3Dマップを用いた,インフラ施設の一元管理による,維持管理作業の効率化の実現。

〇3Dマップ及び各種都市データの融合・分析によるスマートプランニングの実現。

〇最適で安定した電力供給に向けた。電力供給・消費モニタリング・分析サービスの提供

〇燃料電池車両・EV車両の導入による低炭素化の実現と災害時における移動可能な電力供給基地の確保、 〇食品ロスの削減に向けた,ごみ排出量のモニタリングと分析サービスの提供。

〇ゴミ排出量のモニタリング・分析による,ゴミ収集ルートの最適化と回収状況の見える化。

○感染症対策も踏まえた行政事務に関するデジタル・オンライン申請サービス,キャッシュレスサービスの提供。 〇二一ズとシーズのマッチングによる新サービスの提供。 分野

〇産・官・学連携による,新たなサービスの展開。

取組の方向性

日指すべき※1

『次世代モビリティネットワークの形成』

次世代路面電車の実装を通じた持続可能な交通体系の再構築 取組の方向①

斜面市街地における高齢者の生活支援 取組の方向②

目指すべき姿2

『官民連携によるスマートシティの拡大』

都市データプラットフォームの構築 取組の方向③

官民連携プラットフォームの構築 取組の方向4

2.6 官民連携プラットフォームの構築

(体米人メージ)

スマートシティ実現に向けて進むべき方向性

技術オリエンテッドから課題オリエンテッドへ

解決すべき課題の設定が曖昧なままに、技術を使うことを優先していた「技術オリエンテッド」から、「どの課題を解決するのか」、「何のために技術を使うのか」について明確なビジョンを持って取り組む「<mark>課題オリエンテッド</mark>」へ

個別最適から全体最適へ

一つの分野, 一つの主体にとっての最適解を追及する「個別最適」から, 都市全体の観点からの最適化を追求する「全体の観点からの最適化を追求する「全体最適」へ

右図出典:国土交通省 スマートシティの 実現に向けて(中間とりまとめ)図「個別最適から全体最適へ」

公共主体から公民連携へ

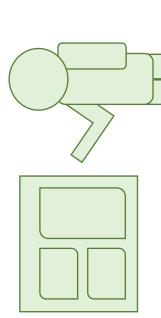
自治体発で取組を主導する「<u>公共主体</u>」から,民間企業の技術 が常に課題に向き合える体制を構築して取り組む「<u>公民連携</u>」へ

(現状と課題)

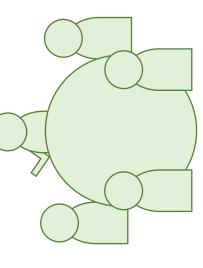
取組を加速するに当たってのハードル

- 〇 民間事業者が有する<u>先進技術にどのよらなものが</u> あるのか, 自治体担当者には専門的な知見がない。
- 〇 その先進技術が、課題のどの部分を解決し得るのか、 深堀りするための意見交換の場がない。

事業化の前段階で, 自治体と民間事業者の "ゆるやかな"勉強会の場が必要 ※ R3年度から,「<u>呉市スマートシティ研究会</u>」として 呉市において事業化


(取組概要)

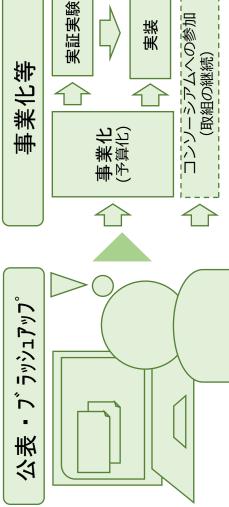
SIEP(1) シーズ調査


- 民間事業者等から募集。 呉市の課題(ニーズ)の解決に資する先進技術(シーズ)の提案を、
- ニーズとシーズが適合する場合は,提案者とワーキングを実施。実証実験や実装に向けて意見交換。

募集期間] 随時地域課題を解決する スマート技術の提案

提 察

- ■スマートシティの取組により解決したい呉市の課題を提示
- ■提示された課題を解決し得る技術提案を募集(当面の間,随時受付)
- ■I CT民間事業者を中心に広く募集
- ■応募者は, 書面及びプレゼンテーションにより提案
- |事務局及び呉市の所管課で,「ワーキング」のプロセスへ進めることが適当かを検討
- ■コンソーシアムにも随時, 意見聴取
- ■ワーキング実施が適当と判断された提案について応募者と所管課を中心に,ワーキングを実施
- ■課題の掘り下げ,費用対効果等について意見交換
- ■ワーキングへの参加に係る費用は、各 自の負担とする。


官民連携プラットフォームの構築 2 . 6

(取組概要)

調査結果の活用 STEP(2)

- 有望な提案をノミネートして公表。更なる提案の連鎖を誘導しながらブラッシュアップ。
- 実装を進める 熟度が高まったものから事業化。実証実験,
- コンソーシアムの一員として取組を継続することも検討。 提案者の承諾がある場合は,

スライドで2~3枚 ニネート (ノニネート概要)

冞뙋

別の事業者が ノニヤート恵 ノニネート概要」を公表 要」を踏まえ, 別ブラッシュアシュア ■公表された |

:一ズと適合する有望な提案

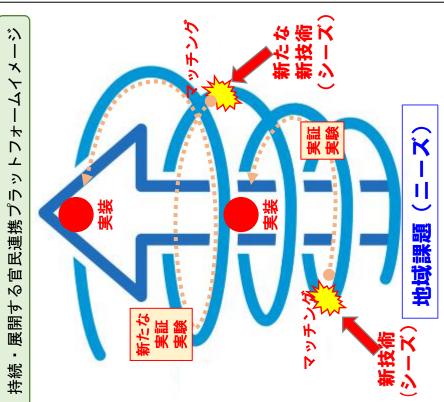
まず「ノニネート案件」

を, まず「. に位置付け

提案事業者の承諾がある場合 ワーキングにも参加可能 ことも可能

提案者の承諾を得た上で,公 表に向けて,「ノミネート概

ニネート案件は, 将来の事 業化を約束するものではない


要」を整理

プ提案を行う

- の検討を経て, 熟度が高まっ た案件から事業化 実現性,
- ■熟度に応じ, 実証実験の実施 又は即時実装を選択
- 令に基づいて適切に手続を行 ■事業化に係る業者選定は,

【官民連携プラットフォームのイメージ】

- □官民連携プラットフォームは,地域課題(ニーズ)と民間事 業者からの新技術(シーズ)提案をマッチングし、実証実験 を経て、新しいサービスを地域に提供していきます。
- □また, ニーズとシーズのマッチングは, 時間経過の中で常に 繰り返され,更に新しい技術,新しいサービスを展開します

KPIは、取組の次のステップに向けての当面の指標とし、 技術の進展や熟度の向上に応じて適宜見直す。

×

2.7 KPIの設定

(1) ストートツトィの田楡イド I

取組	名 National	現況値 (R2)	目標值	達成年度
対	t代モビリティネットワークの形成			
	取組の方向① 次世代路面電車の実装を通じた持続可能な交通体系の再構築			
	市民の高次都市機能への充足感	10. 3% ※1	充足感の向上	R7年度末
	取組の方向② 斜面市街地における高齢者の生活支援			
	市民の交通体系への満足度	-0. 3ポイント※2	満足度の向上	R7年度末
回回	官民連携によるスマートシティの拡大			
	取組の方向③ 都市データプラットフォームの構築			
	都市データプラットフォームを活用した新たなサービスの実装数 (実験環境及びオープンデータの活用によるものを含む。)	l	5件以上	R7年度末
	取組の方向④ 官民連携プラットフォームの構築			
	ニーズ・シーズのマッチング数	-	30件以上	R7年度末
	コンソーシアム(移行後はアーバンデザインセンター)への参画団体数	4者	10者以上	R7年度末
	。 《1 旧土户等举锢大灶目 /D. 在作锢本》	6.5.亩		

^{※1} 呉市民意識調査結果(R元年度調査)の指標。 主要都市にふさわしい都市機能が充分であると感じる人の割合を示す。

^{※2} 呉市民意識調査結果(R元年度調査)の指標。 市域の交通体系に対する回答を,満足(2点),やや満足(1点),どちらでもない(0点),やや不満足(-1点), 不満足(-2点)として数値化し,平均した数値

第3章 取組内容

3.1 スマートシティくれの全体事業概要

デジ ジョン

呉駅周辺地域を起点とした スマートシティの推進による

都市の リ・デザイソ と ブランドカ の向上

目指すべき姿 1

『次世代モビリティネットワークの形成』

取組の方向①

次世代路面電車の実装を通じた持続可能な交通体系の再構築

取組の方向②

斜面市街地における高齢者の生活支援

目指すべき姿2

『官民連携によるスマートシティの拡大』

取組の方向③

都市データプラットフォームの構築

取組の方向④

官民連携プラットフォームの構築

《スマートシティくれの取組の進め方》

~多分野の様々な課題に対して,

官民連携によるスマートシティの拡大を展開する~ 【 ̄___

『官民連携プラットフォームの構築』による展開

[実行計画による先行取組]

平成30年7月豪雨の教訓

喫緊かつ重複的な課題

「交通基盤」

取組2 斜面市街地における高齢者の生活支援

次世代路面電車の実装を通じた持続可能な交通体系の再構築

(組3 都市データプラットフォームの構築

3.1 スマートシティくれの全体事業概要

呉駅周辺地域 を 起点とした スマートシティの推進による 都市の リ・デザイン と ブランドカ の向上

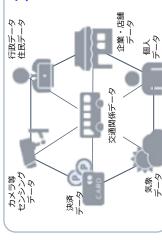
アローン配派

取組1 次世代路面電車の実装を通じた

持続可能な交通体系の再構築

呉駅周辺地域を起点に次世代路面電車(次世代 BRT)やMaaSなどの新技術を活用した持続 可能な交通体系の再構築

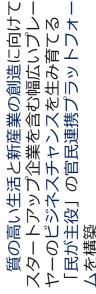
取組2 斜面市街地における高齢者の生活支援

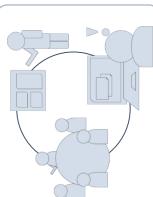

斜面市街地,島しょ部等の地形条件で快適に住み続けるため,生活支援施設と連携した公共交通を補完するファースト/ラストウンマイルの交通体系の再構築

上活支援施設・ラストマイルモビリティから データとサービスを拡大

都市データプラットフォーム と 官民連携プラットフォーム によりスマートシティを 持続的に拡大

官民連携プラットフォームの構築





成長・拡張し続ける都市データプラッ

トフォームを構築

三原市

洲

【取組1】次世代路面電車の実装を通じた持続可能な交通体系の再構築

(は米 / メーツ)

თ . ს

広島空港 KH (1) 汝世代モビリティ全体ネットワークの構築

至 広島市

【都市間】

都市拠点等

〈想定される交通モード〉

・鉄道(JR呉線)

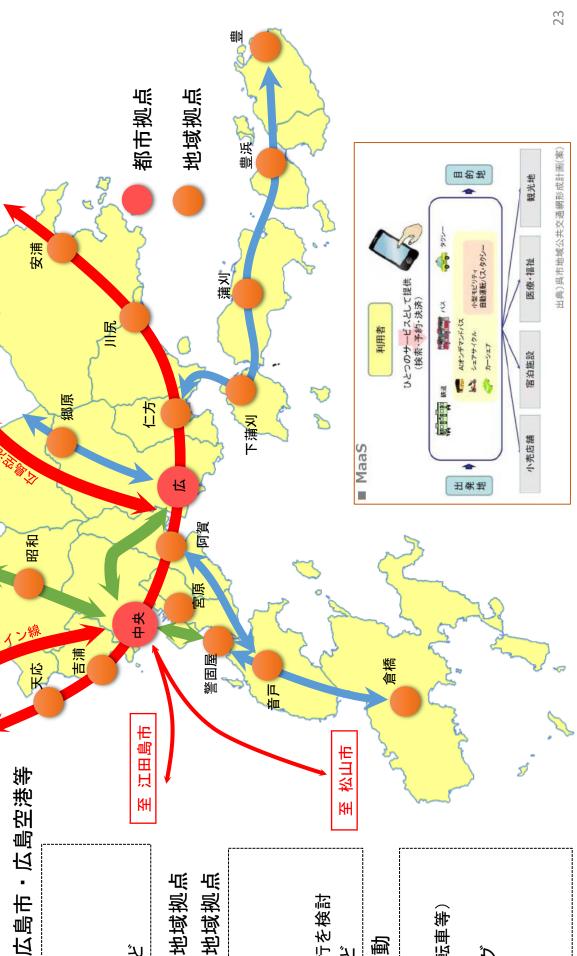
など (フェリー・高速艇) ·汝苗代BRT

航路

都市拠点 【拠点間】

地域拠点

移動量 小


〈想定される交通モード〉

- 鉄道(して呉線)
- · 汝苗代BRT
- ※移動量が多い路線は隊列走行を検討
- 路線バス・デマンドバス

都市·地域拠点内移動 【书棋内】

(想定される交通モード)

- 次世代モビリティ(小型自動運転車等)
- **ナレンドバス・タクツー**
- ライドシェア・カーシェアリング
- ・ペーンナルモビリティ
- 自転車(レンタサイクル含む)
- 生活航路 など

თ . .

(体米人メージ)

呉駅を起点とする中・小型の次世代モビリティの導入 ら復刻 ■呉市電を「次世代路面電車」 四中回 都市間・地域間ネットワークの構築 至 広島市

江原町

ピーク時間帯は隊列・連接バスによる大量輸送

上長泊町

本町

州中

面城

和庄

温

中

田田

中央

超田鉄川

東三洋田町

A 原 原 通 路

次世代の公共交通体系にお ける基幹交通の運行形態とし 中・小型の自動運転車両 がフレキシブルに連節・分離 ニーズに応じた効率的な 運行を実現する<mark>次世代路面</mark> 車の導入を想定。

災害時の都市間交通を支える「災害時BRT」

阿賀中央4

阿賀中央8

安芸阿賀駅

用レーンを設置することにより、呉駅と広島市とをつなぐ災害時B 災害時には, 4車線化 される広島呉道路に専 2

東林館高呉分校5島文化学園大 阿賀南6 広島呉道路災害時BRT

平成30年7月豪雨

PPASCO Incremen

広多賀谷 四日無可能

大米広1

24

(現状と課題)

ა . .

- 少子高齢化,モータリゼーションの進展によるバス利用者の減少,運転手の不足, さらにCOVID-19の影響等により,バス事業の維持が困難な状況となっている。
- これにより, さらにバス路線の廃止・短絡化などを引き起こしており, 悪循環(
- このような中, 平成30年の豪雨災害時には, 土砂災害により基幹道路が通行止め になり,さらに,市内各所で深刻な渋滞が発生した。
- この時,広島呉道路の一部通行可能区間をJR呉線の代行バス等が緊急通行する 災害時BRTを運行し,市民・通勤利用者の足を確保した。
- これを通じて,公共交通の必要性を市民が再認識するきっかけとなった。
- 以上のような観点から,当区域では**,次世代モビリティ(次世代BRT,自動運** 転車両など)やMaaSなどの新技術を活用し,持続可能な交通体系への再構築 が必要となっている。

自動運転車両の連節・分離のイメージ

大きな駐車場で 人は窮屈

電子連結にするとトラックもバスも

注車場が公園に

、ラックが、貨物列車になったりトラックに戻ったり 利用に応じて、付いたり離れたりで効率的に (スが、路面電車になったりバスに戻ったり

自動運転車両側における自己位置特定技術

- 磁気マーカー, 電磁誘導線
- 高精度GPS
- 車載センサー(LiDAR:レーザースキャナなど)

技術的課題

- 【道路側の支援技術
- ▶降雪・霧等の気象条 件による機能低下
- 正確な自己位置特定 が必要となる箇所に
- 分合流部では, 検知
- 自己位置特定のための支援機能の整備
- 自動運転に対応した走行空間の確保

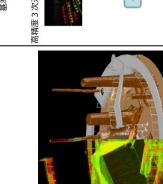
が必要となる

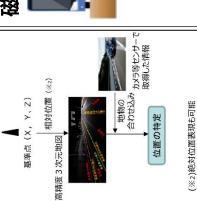
【取組1】次世代路面電車の実装を通じた持続可能な交通体系の再構築

თ . .

自己位置特定のための支援機能の整備 (取組概要)

高精度3次元地図


绝对位置 位置の特定 高精度GPS


電子基準点等 からの補正情報 (※1) (※1)慣性計測装置(IMU) を用いて補正する方法もある

N

×

衛星

磁気マーカー

し、走行車両 事前に高精度3次元地図を作製 かつ、電子基準点からの補正 高精度GPSは、衛星から(X,Y,乙座標)の情報を受信し,かつ,電子基準点からの補正情報や慣性計測装置(IMN)を使った補正により,車両の位置情報を特定する。

る。車両側は底部に設置したセンサーで「磁気

- カメラやLiDARなどのセンサーを取り付け、カメラで取得した情報と地図とを照らし合せて位置情報を算出する方法。 シ高精度3次元地図に交通情報などを付加したものが「ダイナミックマップ」と呼ばれ、自動走行に求められる車線レベルの自車両位置の特定を可能にし、分岐点における行先に応じた最適を車線の選択、右左折に合わせた車線の選択を な車線の選択、 支援する。
- マーカー」等を検知し、走行場所を特定する。 マーカー」等を検知し、走行場所を特定する。 「磁気マーカー」は、走行ルート上の道路に磁 石(マーカー)を埋設又は敷設し、S極とN極 の配置パターンにより、車両に対して速度指定 や停止等の情報の伝達を行う。 ア「電磁誘導線」は、走行ルート上に交流電流が 流れる誘導線を埋設し、自動運転車を、当該電 磁誘導線に沿って走行させる。
- 電磁誘導方式では,磁気マーカーや電磁誘導線の埋設など施設の整備と管理が必要となる。 GPSが使用不能となった場合等において有効

【技術特性】

- 高精度GPSの場合は、山間部等地理的な要因 (切土面や樹木等)やトンネル・橋梁下等構造 的要因によってGPSの測位精度が低下したり、 受信できないエリアの存在が課題となる。
- > 位置特定では、降雪や霧等の気象変化等によるセンサー性能の低下が懸念。また、地図データの精度の維持も課題。> 高精度3次元地図データは、車両位置特定だけではなく、インフラの維持管理、防災・減災への事前対策等、様々な分野での活用が可能。
- 全道路への 設置コストは比較的安価。しかし、 電磁マーカー等の敷設は困難。 限定された道路では、比較的導入し
- 比較的導入しやすい。

7,700千円/km

忿

(道路環境整備は該当なし)

【技術特性を踏ま えて導入が想定さ

れる範囲、

【概算整備単価】

თ . თ

自動運転に対応した走行空間の確保 (取組概要)

路面表示の図柄の統一

自動運転車用標識 白動運転専用標識 のイメージ室 R=15m·0=175° 左カーブあり

信号機連携制御

- るための対策の一つで, 自動運転 他の車両等を道路構造的に分離す 車が走行することを明示する路面 標示を施すもの。
- コードを自動運転車に搭載された は瞬時にさまざまな情報を取得す カメラが読み込むことで,車両側 VORコードが一体となった道路標 識で, 道路上に設置されたQR ることが可能。
- 自動運転で走行する。 VORコードは,数字のみたあたば
- VQRコードは,国際的にも広く規 格が普及しているため、今後国際 基準となる自動運転向けインフラ が誕生する可能性もある。

7,089字, 英数4,296字, 漢字・か

な1,817字のデータ格納が可能。

- 着色舗装と同様に, できるように, 自動運転車と他の 車両等を道路構造的に分離するた めの対策の一つとして、自動運転 自動運転車が安全かつ円滑に走行
- からの来訪者にも理解可能となり, り、地域内だけではなく、地域外 自動運転車が走行することが明確 路面標示図柄を統一することによ

知する立看板や路面標示等が必要。

自動車メーカーから、自動運転に

舗装等によるセンサー等の認知誤

差が挙げられている。

急カーブなど注意喚起を要するエ

おける実証の課題として,カラー

線を視覚的に分離。ただし、自動 運転車両走行車線であることを周

自動運転車走行車線とその他の車

車専用車線に着色する方法。

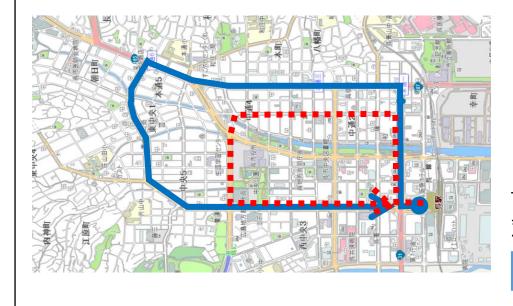
- - マルート上の交差点の信号制御器に している信号の色や点灯残時間な 受け取った車両は、情報をもとに 専用の無線装置を取り付け,点灯 どの情報を自動運転車両に送信。 A
- 逆光や障害物での不識別,確認信 直接車両に信号機の情報を送るた メラを利用することが多かったが Vこれまで, 信号機の確認は車載力 号の誤認識などの課題があった。
 - め、より正確に信号確認等が可能

- リアでの導入が想定される。 【技術特性を踏ま えて導入が想定さ
- >レセンサー等が誤って認識しないよ
- うに、舗装などの反射率・反射度 の基準化が必要。
- 忿 29, 700 十 田 / km (※3m 幅 厘)

忿

【概算整備単価】

- 15,800千円/Km (※1 車線)
- 5,500千円/km


忿

忿

【取組1】次世代路面電車の実装を通じた持続可能な交通体系の再構築

ノート 室

ა . .

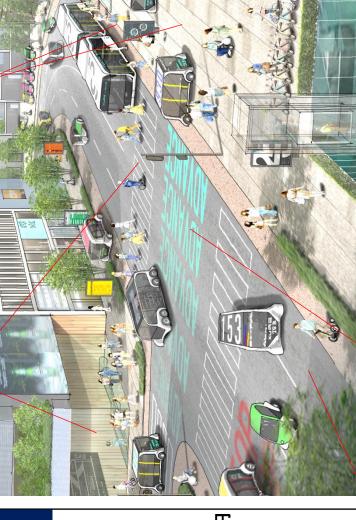
- Aルート ---B*I*---
- (ルートは検討段階で、決定したものではありません。Aルート、Bルートを中心に、整備範囲を検討します。 X

整備イメージ / 例:Aルート)

信号機連携制御

参 2,000千円 概算事業費

自動運転専用標識


約22,000千円 概算事業費

磁気マーカー等 (電磁誘導線)

参 13, 200 千円 概算事業費

三次元点群

参 30,800

参 118,800 概算事業費

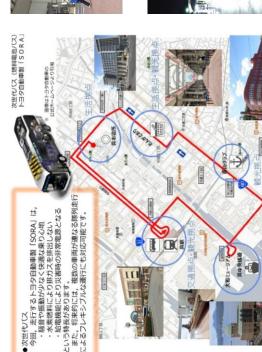
着色舗装

路面表示の図柄の統一

参 21,200千円 概算事業費

整備範囲

卷 238,000 中日 総事業費 概算


※上記には、車両導入費は含まない。

「これまでの財組」

თ . .

次世代モビリティ導入に向けた社会実験

次世代モビリティの導入を軸とした新たな公共交通体系の構築に向けた社会実験

商店街の通行状況

非常電源PRイベント

〔2019年11月30日,12月1日, 12月7日,12月8日〕

次世代バス(燃料電池バス)による社会実験

自動運転バス

【今後の取組】

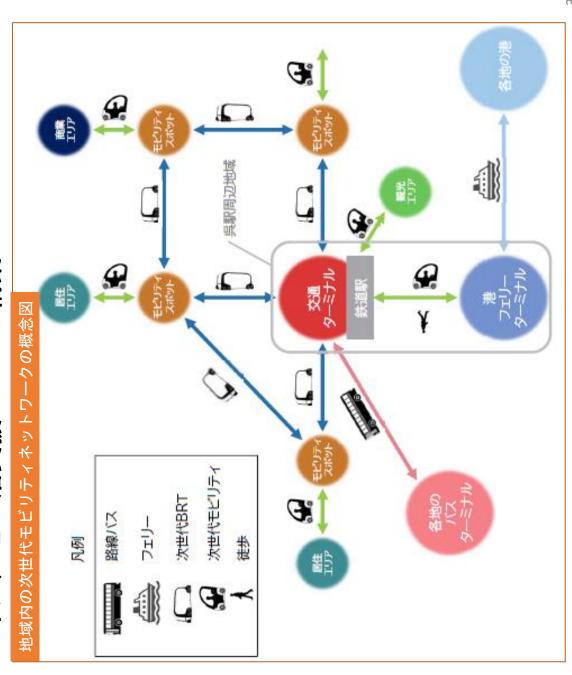
- 次拡大し,実装する次世代モビリティ,道路側の支援技術,実装に向けての必要な公共空間 ·ニーズのマッチングにより, ○官民連携プラットフォームによるシーズ の再整備等を検討する。
- ルート・停留所・ダイヤ等の利用者ニーズを把握し,利用者ニーズに適応した運行形態を検討する。 大して社会実験を継続することにより,次世代モビリティの認知度・受容性の向上を図るとともに,)社会実験は呉駅巡回ルートから着手し,段階的に呉駅-新広駅の都市拠点間ルートなどに拡
- ○呉駅周辺地域総合開発(第1期開発)の完了見込年度(2024年度)にあわせて,道路環 境整備を行い,次世代モビリティ(自動運転)の実装を目指す。

〇取組の連携業種(案)

運行主体	地元交通事業者
乗り継ぎ連携	鉄道事業者,路線八八事業者,航路事業者
MaaS	MaaS開発事業者(ITベンダー等)

自動運転バス走行実験[2021年1月22日~24日]

--- は手動運転区間です

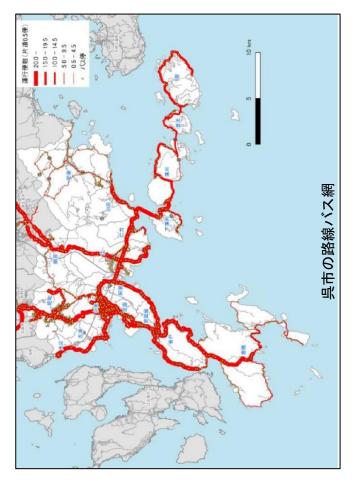

ო . თ

(な米イメーツ)

地域内ネットワーク(ファースト/ラストワンマイル)と生活支援MaaSの構築

け,地区内における次世代モビリティの導入とともに,特 に高齢者の生活を維持するための生活支援MaaSの構築 子供から高齢者まで幅広い市民がその効果を享受する ことができる「公共交通維持」に関する課題の解決に向 に取組む。

- ► <u>交通ターミナル</u>と周辺エリアの間に、**モビリティスポット**
- ▼ 次世代モビリティにより、交通ターミナルを起点とする地区内に おける次世代モビリティネットワークを形成
- 商店街との連携により、特に高齢者が安心して外出できる 生活支援Maa S を構築 交通事業者,

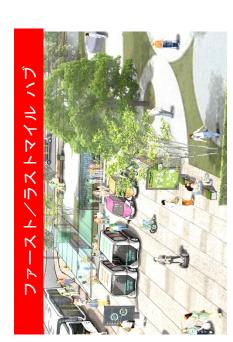


【取組2】斜面市街地における高齢者の生活支援

(現状と課題)

ო . ო

- ▶ 人口減少や少子高齢化の急速な進行,公共交通利用者の減少,運転手不足など,呉市の地域 公共交通を取り巻く環境は年々厳しさを増している。このため,公共交通 (バス路線等) に おける従来どおりのサービスの提供が困難となってきており, 路線の廃止など, 公共交通 (路線バスやタクシー等) サービスは縮小傾向にある。
- さらに, 狭隘な道路が複雑に入り組んでいる呉市の斜面地域においては, 従来より, 最寄り バス停等と自宅とを接続する端末交通が整備されていないため, 自家用車移動に依存する傾 向が高くなっている。
- これらは, 高齢化が急速に進む中, 高齢ドライバーによる交通事故の危険性の増加や自家用 車移動ができない人々の外出機会を制限する要因となっている。
- このような中, 従来の公共交通稼働エリアの一部を補完するととも, 未整備であった端末交 通サービスを確保するツールとして, ファースト/ラストワンマイルの移動手段として小型 モビリティの導入が必要となっている。

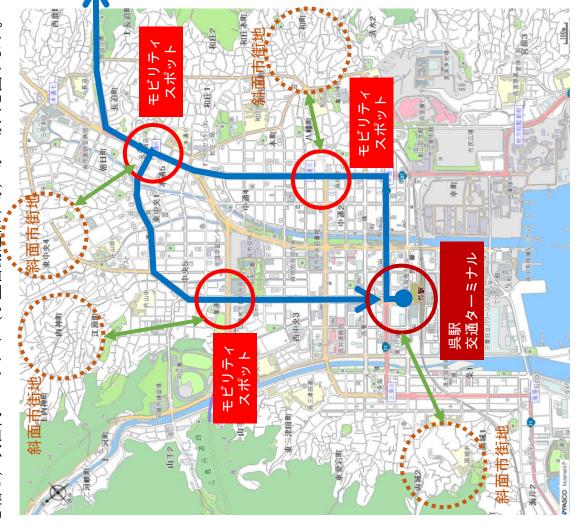


- 路線バス・タクシー等の稼働エリア
 - ファースト/ラストマイル・モビリティの稼働エリア
- 特に,呉市の斜面市街地など狭隘な道路が入り組んでいるエリアにおいては,小回りのきく 小型モビリティの導入が効果的である。
- 者の外出機会を拡大し, 高齢者の交流機会を増やすとともに, 運動不足の解消などにも寄与 <mark>提供【生活支援MaaS</mark>】により,ウォーカブルなまちづくりにも寄与することになり,高齢 て,交通情報・店舗情報・割引クーポン,またCOVID19関連の密情報,災害時の道路情報等の ルモビリティの導入のあわせて,**交通事業者,呉駅周辺地域や地域の商店街・病院等と連携し** 特に斜面市街地に居住する高齢者は生活施設が利用しにくい状況であることから, ワンマイ する。また,家族などによる自家用車送迎など第三者の負担軽減などにもつながる。
- 災害時等においても,小回りのきく小型モビリティは,地域内での人の移動や物資の運搬な どにおいて, その有効性を発揮するものと想定される。

ო . თ

(取組概要:ファースト/ラストワンマイルネットワークの構築)

○斜面市街地に住む子供から高齢者まで,誰もが気軽に外出し,中心市街地等を回遊できるように,斜面居住地を中心に, ファースト/ラストマイルハブと居住地周辺を結ぶ,次世代モビリティ(小型自動運転車等)等の導入を図ります


待合機能 ・次世代モビリティ,ファースト/ラストマ イルモビリティの待機スペース、 を備えた乗り換え拠点

ファースト/ラストマイル モビリティ

モビリティにより, 斜面市街地の移動手 段を確保 ・小型・低速のファースト/ラストマイル

〈想定する交通モード〉

- 次世代モビリティ(小型自動運転車等)
 - デマンドバス・タクシー
- **レイドシェア・カーシェアリング**
- パーソナルモビリティ
- 自転車(レンタサイクル含む)
 - 生活航路

バスタプロジェクトの一環として 総合交通拠点を整備

【取組2】斜面市街地における高齢者の生活支援

ო ო

これまでの財組

利用可能性を検証する社会実験 日常生活等における新たな移動手段の

斜面市街地の居住者を対象として,「グリーンスローモビリティ」を利用し, 呉駅及やバス停等の交通拠点,あるいはれんがどおり等の市街地中心 部への移動を体験して利用者の反応、交通手段として実装する場合の 課題の検証を実施。

実施主体:広島大学及び呉工業高等専門学校

国土交通省「道路政策の質の向上に資する技術研究開発」(令和2年 度)の支援を受けて実施

、今後の取組、

- さらに島嶼部に社会実験を順次拡大し、ファースト/ラストワン マイルを担う公共交通としての課題を検証し,実装に向けて官民連携プラットフォームによるマッチング,利便 性向上のための必要な情報・機能, 地域による運営形態の検討等に取組む。 ○呉市中心部を取り囲む各地の斜面市街地,
- 済,COVID19関連の密情報,さらには災害時の道路情報等の提供の社会実験やアンケート調査により課 〇斜面市街地に居住する特に高齢者の誰もが気軽に外出し, 中心市街地等の生活施設が利用しやすい環 ント・各商店・病院等と連携して,発着時間の調整・バスロケ情報・店舗情報・割引クーポン,予約, 電子決 境づくりに向けて,ワンマイルのモビリティの導入とあわせて,交通事業者,呉駅周辺地域や地域の商店街のテフ 題を検証し,利用者と店舗が両者ともwin-winの関係となる生活支援MaaSを構築する。
- ○将来的には,観光地情報や J R 等を含めた決済のシステム化等を含めた観光MaaSも視野に入れ,必要 となる機能を検討する。
- ○生活支援MaaSは,呉駅周辺地域総合開発(第1期開発)の完了見込年度(2024年度)にあわせて 実装を目指す。

〇取組の連携業種(案)

生活支援MaaS

店舗情報

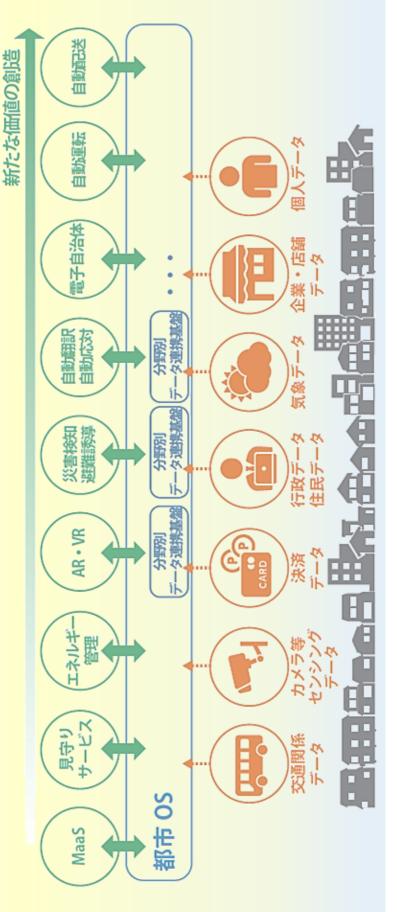
時刻表情報 経路検索

> 病院等の予約 ・割引クーポン 電子決済

> > 呉駅周辺地

斜面市街地

•バスロケ情報 ·密情報(COV


- ·電子決済
- 災害時の道路情報

(体米イメージ)

(1) 都市データプラットフォーム 部米イメージ

市内全域に張り巡らされた高速通信網を基盤として,先端技術を活用した新たな交通サービスや都市データプラットフォーム (都市OS)などでスマート化されたまちが, コンパクトシティとネットワークの核である呉駅周辺から全市域に拡がる形で, Society5.0が実現しています。 そこから生まれる人と人との出会いや交流,集まる情報などから,様々な分野でイノベーションが起こり,ライフスタイルが 大きく変化するなど, 全国の地方都市のモデルとなり, 新しい時代にふさわしい質の高い生活を楽しんでいます。

(第5次呉市長期総合基本計画から抜粋)

【取組3】都市データプラットフォームの構築 3. 4

(現状と課題)

自治体スマートシティの課題

)サービスの再利用・横展開

個別最適化されたシステムで他地域への横展開が困難

② 分野間データ利活用

各々が閉じたシステム(サービスとデータが1対1)で,都市内・都市間のサービス連携が困難

③ 拡張性の低さ

システム拡張性が低く, 各地域でゼロからの構築が必要で, 開発のスピードダウン・コストアップ

都市データ プラットフォームの特徴

① 相互運用 (つながる)

都市内・都市間のサービス連携や,各 都市における成果の横展開が可能

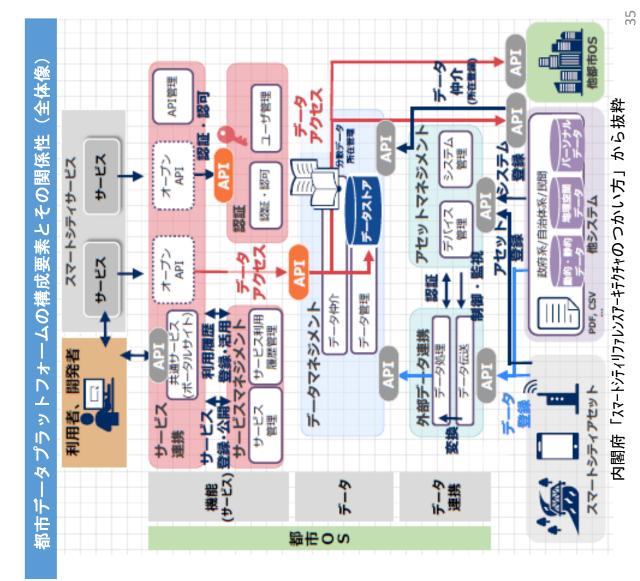
② データ流通 (ながれる)

様々なデータを仲介して連携させる仕組み(サービスとデータがN対N)で,都市・サービス間の連携が可能

③ 拡張容易 (つづけられる)

機能更新等による拡張の容易性,他地域からの横展開により開発のスピードアップとコストダウン

(取組の方向性)


◎各自治体では、個別システム構築によるスマート化は進みつつあるが・

▽データの連携性・拡張性を念頭にした取組が必要

◎スマートシティくれの進め方「官民連携によるスマートシティの拡大・展開」

>先端技術を有する民間事業者が呉市実態を的確に把握すること が必要

⇒ 都市データプラットフォームの構築

(仮)バスタ呉・データマネジメントの構築と拡大・展開)

「(仮)バスタ呉・データマネジメント」から成長・拡張し続ける『呉市・都市データプラットフォーム』

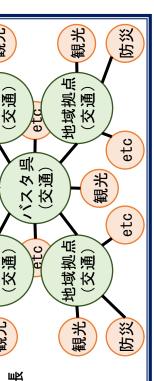
呉駅周辺地域において整備を目指すバスターミナルにおいて,交通系データ,インフラ系データを中心としたデータマネジメント(データストア,P))を構築し,これを起点に,地域間・サービス間で拡張された『呉市・都市データプラットフォーム』の構築を目指す。 API

(仮) バスタ呉・データマネジメントの構築 (本)

呉駅周辺地域において整備を目指すバスターミナルにおいて、交通系データ、インフラ系データを中心としたデータマネジメント(データストア、API)を構築

地域データ7秒、//> (呉中央) //スタ県 (交通)

地域間拡張 地域拠点を中心に, データ マネジメントの範囲を拡張


地域拠点 (交通) バスタ県 (交通) 地域拠点 (交通)

<u>(仮) 呉市・都市データ</u> プラットフォームの構築

地域データマネジメント(呉中央)

地域間・サービス間で拡張 された都市データプラット フォームを構築

※詳維に次ペーン参照

一観光

地域拠点

历災

etc

etc

历災

历災

地域拠点

観光

(etc) | ※詳緒は次、

観光

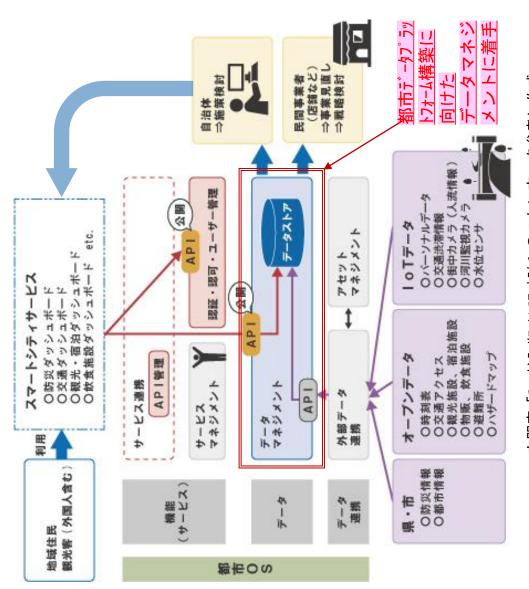
/バスタ呉 (交通)

訓)など、緊急性の高い分野を中心に、官民連携により、データマネジメントの範囲を拡

地域データマネジメントを構築。

観光分野(CONID-19の影響からの回復が急)や防災分野(平成30年7月豪雨災害の教

(地域データマネジメントの構築)


サービス間拡張

((仮) 地域データトネジメントの概要)

	データ分野	活用が想定されるデータ	活用が想定されるサービス分野
I	松剛	GIFSデータ【国交省 標準化済】, E1C2.0 データ, 道路交通情報, 歩行者情報	ルート検索・乗り物予約・決済、渋滞情報提供
		7,災害•道路交	災害情報提供,避難情報提供
2	克淡	位データ,避難所データ,避難状況データ, 殴る‱※』 カ	避難所活動支援
+	エネルギー	**&**心は / プープ 電力・ガス利用データ	エネルギー利用最適化,省エネ意識の職は、
	セキュリティ	GPSデータ	職成 子ども・高齢者の見守り
×	インフラ	3 Dマップデータ, 地盤情報データ, 設計	公共施設維持管理の効率化・最適化
	維持管理	データ,点検・更新データ,GISデータ	
	観光	人流動態データ,観光地情報,飲食・宿泊施設情報,多言語情報,集客データ	観光情報検索。宿泊施設検察・予約・ 決済
\$	健康	î -	健康リスク評価,データヘルス, 遠隔地医療
	教育	児童・生徒データ,教職員データ,学習記録情報, 学力データ	学習支援, 教育体制の効率化(遠隔教育等)
}•}	生活和価性	人口データ, マイナンバーデータ , COVID-10控価信報	行政サービスの効率化
=-000 =-0000 =-000		ボータ. ボのセン	栽培環境データ 農業生産・経営の効率化・最適化 サデータ
	参 消	貨物動態データ,倉庫利用データ	輸送の効率化・最適化
D o	生産性	生産量データ,在庫データ	生産の効率化・最適化 新商品開発マッチング
*	産業振興	購買データ,来客データ,店舗立地データ	販売促進・最適化,出店計画支援

データマネジメントの構成要素 データプラットフォーム 過市・ 飯

【交通×観光×防災データマネジメントイメージ案】

内閣府「スマートシティリファレンスアーキテクチャのつかい方」を参考に作成

【取組3】都市データプラットフォームの構築 ა .

((仮) 呉市・都市データプラットフォーム構築の流れと展開イメージ案)

他分野人拡大 市全域へ拡大

「訪れたくなる・住みたくなる」スマートシティ

「イタルデータとデータヘルスを組み スマート・ウエルネスの実現 合わせ効率的な健康管理を実現

電気やガス等のエネルギー利用デークを活用 スマート・エネルギーの展開

多言語, キャッシュレス等高機能で可 し, 省エネルボー・エネルボーマネジメントを展開 動性のある新たな店舗の展開 スマート屋台

機軸となる取組

「(仮)バスタ呉・データマネジメントの構築

子どもや高齢者の位置情報と経路情報

子供・高齢者見守り支援

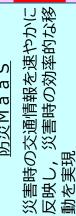
を提供し移動弱者の見守りを実現

観光MaaS

ータの活用により, 迷わず 観光・イベント情報と交通 効率的な移動を実現

(仮)バスタ呉 データマネジメント構築 道路側データ,車両側データ 次世代路面電車の実装

展開


携を視野にデータマネジメントシステム 交通系デー9, 3Dマップとの連 (データストア, API)を構築 ☆通データを効果的に活用で┃

きるよう,総合的に管理

公共交通情報のオールGTFS化

生活バス15路線, 乗合タク シー2路線, 航路3路線の GTFS化を実施

防災MaaS

全 其

展開

災害リスク情報の提供

く位センサーや崖崩れセンサー等によ 災害情報をいち早く提供

避難行動支援

避難所情報を統 合し, 最適な避難行動を支援 気象情報,災害情報,

展開分野

- 災害時に頼りになる」スマートシティ

足デーク等を活用し,避難所活動を支援 インフラ情報のデータベース化

避難所への避難者データ,物資ストック・不

避難所活動支援

データを蓄積し, 迅速な復旧活動を実現 地域の三次元データや施設点検・補修

市全域へ拡大 他分野人拡大

【取組3】都市データプラットフォームの構築 ა .

(取組概要①)

(R2年度取組中:公共交通情報のオールGTFS化)

- · 四 忠 赞呵
- や生活航路のデータ化が進んでいない GTFS化は進んでいるが、生活バス 呉市では, JR呉線や基幹バス路線の
- 呉駅からグリーンピアせとう ちに行くための経路をGoogleマップで 検索すると、右図のとおり結果表示
- ているが,経路検索には未反映。結果, 安浦駅まで行けば生活バスが運行され 利用客の利用機会が喪失
- こうしたことから, データモデルが標 「GTFSデータ」を機軸に生活バスや生活 オープン化を行い、交通系データを集 航路の運行情報のGTFS化を実施 準化されているバス情報標準フォーマット
- には「(仮)バスタ呉・データマネジ 短期的には「利用客の増加」,長期的 メント」の基幹データの整備を図るも

GTFSデータ整備の効果

- バスタ呉・データマネジメントの基幹データの整備
- 経路検索サービスに掲載されることによる利用機会の増加 2
- 多様な活用による事業の発展・業務の効率化 ო

S 取組内容

?

呉市の交通情報を無料でGoogleマップに表示します

(全2路線) 乗合タクシー2路線 航路5路線(全5路線)のGTFS化を実施 生活バス15路線(全18路線中),

① データベースの作成

生活バス及び生活航路の運行情報 に関する「GTFS-JP」データを作成

データのオープン化 **Q**

作成したデータを,第三者が編 集・加工等をできるようにインタ ネット上に公開

③ 更新体制の確保

ンケート等を実施。ダイヤ改正や運 休情報など,運行情報に変更がある 場合の更新体制の確保に向けて検討 参加事業者へ作業方法の説明,

データ化する項目

- 停留所
- 緯度•経度) (名称, 読み仮名, ·路線·系統
- 時刻表
- 紪 運賃表

国がホすコントンシプロバイダ

- ・ ヴァル研究所
- goog | e
- ・ジョルダン
- ・ナバタイイジャペソ

Googleマイ・マップの作成 [サブ・プロジェクト]

- 位置情報(緯度・経度データ)の搭載が、 GTFSデータの整備に当たっては、 最も作業量が大
- 位置情報を簡易に登録し,GTFS形式に変換可能で あることから,将来活用を視野に,文化財情報・観光情報などのGoogleマイ・マップの作成を進行中 Googleマイ・マップは, ップの作成を進行中

【取組3】都市データプラットフォームの構築 3. 4

(取組概要②)

次世代路面電車の実装を通じた持続可能な 交通体系の再構築 取組 1

取組2

斜面市街地における高齢者の生活支援

取得したデータ 実証事業で

C

3 D都市データ

都市データプラットフォームの構築 取組3

第1期整備完了(2024年度末)までは,取組①, 取組②の 実証事業に基づくデータ・3D都市データの蓄積及びシステム検討を行う。 〇呉駅周辺地域総合開発

〇蓄積データを基にPDCAサイクルにより改良・改善を行い、実証事業に取組み ニーズに合った実装を目指す。

実証事業によるデータ蓄積

• 利用者属性

・発着地検索データ,検索を行った時間データ,利用ルート・停留所, 利用者数

舭 利用時間データ 病院等の利用需要, 利用店舗,

ニーズ(アンケート調査結果等)

• 回答者属性

アンケート結果

₩

プラットフォーム構築 〇取組の連携業種(案)

システム開発事業者(ITベンダー等)

取組	【取組①】 次世代路面電車の実装を通じた 持続可能な交通体系の再構築	【取組②】 斜面市街地における 高齢者の生活支援	【取組③】 都市データプラット フォームの構築
先進性	都市拠点内・間の公共交通を自動運転・ MaaSなどの新技術導入により、災害時も 含めて持続可能な公共交通体系を再構 築する。	次世代モビリティ導入により、ファースト/ラストワンマイルの交通手段を確保し、【取組①】と連携して、都市拠点内の総合的な交通体系を構築する。 次世代モビリティと生活支援の組合せによる生活支援MaaSの構築する。	多分野データで構築する地域プラットフォームの 連携により、地域性を踏まえた都市データ プラットフォームを構築する。
効率性	磁気マーカー等の新技術の設置は, 官民連携により行うことで, 維持管理の効率化を図る。	地域住民の運営が可能なモビリティであることから, 公共交通インフラの効率的な管理が可能となる。	ビックデータ分析等により、公共交通維持や エネルギー供給、ごみ処理等の最適化を図り、効率的な維持管理を図る。
維続性	自動運転等の新技術導入により, 運転者不足等の問題解消の一助となり, 民間事業の継続が可能となる。	低速で安全な次世代モブティ導入により,地域住民等による運行・運営が容易となり,地域ニーズに合わせた事業継続が可能となる。	アーバンデザインセンターを中心として、新たな民間事業者の参画により、公・民・学・住が連携し、各主体が刈がを享受するビジネスモデルを構築する。
汎用性	都市拠点内の公共交通問題は,全国各地で生じており,汎用性のある新技術導入により,問題解消を図っている。	本市の特徴である狭隘道路が複雑に入り組んでいる斜面市街地は全国各地に存在することから汎用性は高い。	公共・民間のビッケデータ化は一般化されつつあり、行政課題解消、ビジネスモデル構築への活用の汎用性は高い。

展開方針 第4章

ロードトップ 4

官民連携プラットフォーム

呉市の動き

を目途に, 実証事業により改善を行い各取組を実装し, 引き続 2024年度末,あるいは,本実行計画の終期である2025年度末 呉駅周辺地域総合開発 (第1期開発)の完了見込年度である 29 交通社会実験の実施 (市街地・斜面地 から 島嶼部・都市間 へと 順次拡大) 各種サービスの実証実験を展開 28 生活支援MaaSの拡大 構成員の拡充 蓄積データの拡大 自動運転の拡大 27 き拡大・展開を目指す。 **5**6 ツーズ・ニーズマッチングの拡大 MaaS実装 自動運転 生活支援 システム 構築完成 黑羰 25 2020年代 記 自動運転 道路環境整備 斜面市街地での生活支援MaaS 24 都市データプラットフォームの構築 第1期整備 アーバンドーンセンターへの移行 官民連携プラットフォームの構築 23 取組①②の実証データ 呉駅周辺地域総合開発 コンソーシアムから **実証事業** 22 21 デー整備 着手 着手 20 2019 斜面市街地における高齢者の生活支援 次世代路面電車の実装を通じた持続 都市データプラットフォームの構築 リーディングプロジェクト

可能な交通体系の再構築

【取組2】

【取組3】

取組1)

4.2

が主役 此

「Tベンダーや製造業などの大企業も

まちの商店や工場も

農業・漁業に携わる方々も・・・・あらゆる事業者の方々が

#

ダブルワークでスキルを活かしたい方々も

I Tスキルを持つ学生や主婦の方々も

実証実験の実施 ・知見の公表

> KUREZZ-hŷf4]yy-ŷyb 、将来はUDC)が民間と 連携して実施します。

実行計画の取組は,

・目的を共有する事業者等の参画 ・実証フィールドの提供

知見の提供や 心募·提案

整理·提示 地域課題の

> ○ 吳工業高等專門学校 ○ 復建調査設計 (株) 〇 広島大学

公・民・学の連携組織「アーバンデザインセンター」を組成

現在のコンソーシアム から移行 **※**

(今後さらに構成員を拡充

74-7 プロット

連携 体制

提案に対し,

○ 呉市役所のあらゆる関係課により ワンストップで事業化検討

従来手法にとらわれない柔軟な 意見交換の場 0

熱度に応じて適宜, 事業化を推進 * ふ マッチング

グ コーディネート

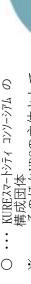
あらゆる分野で 新たなサービスの実装 と 新たなビジネスの創造 を推進 3D都市 モデル 都市データ 。ラットフォームの 構築 交通まちづくり を 起点に 斜面市街地 における

MaaS

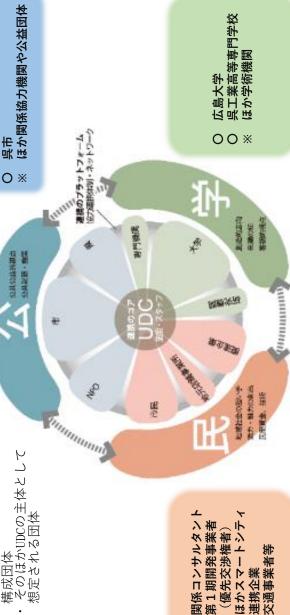
之通手段の

次世代路面電車 の実装に向けた

道路環境整備



(1) 持続可能な推進体制に向けて ~ ァーバンデザインセンターの設置 (公・民・学の連携)


- ○呉市域内ではすでに,スマートシティモデル事業への応募を契機に「KUREスマートシティコンソーシアム」が組成されている。
- ○現在の取組を持続的に広げ,新たな価値を創造し続けていくため,多様なステークホルダーの連携組織として,行政,民間,学術研究機関からなる

「アーバンデザインセンター」を設立する。

【想定されるアーバンデザインセンターの主体】

そのほかUDCの主体として 想定される団体 *

公・民・学の連携イメージ (UDCKのパップレットより引用)

交通事業者等

連携企業

ж

※

×

※ UDCの設立に向けて,現在のKUREスマートシティコンソーシアムの構成団体に呉駅周辺総合開発(第1期開 発)の開発事業者(優先交渉権者)等を加え,UDC設立準備組織を組成し,UDCの体制や活動方針を検討します。

【アーバソドガムソカソターの思組例】

~ 交通まちづくりとスマートシティの実現に向けた社会実験 ~ 時代を変革する先駆的サービスの創造

茨城県常陸太田市 自動運転実証実影

ひたちMaaS実証実験

公・民・学の連携による新たな価値の創造 ~ 呉市版「リビングラボ」の実施 ~

鎌倉リビングラボ

公・民・学の連携のイメージ

多用途に使える魅力的な広場空間の創造

公共空間の有効活用に向けた社会実験

バスタマーケット

※

(2) 持続可能なビジネスモデルの構築に向けて

○アーバンデザインセンターを中心に,官民連携により,多様なデータを都市データプラットフォームに格納・蓄積し,多分野への展開検討,高質なサービスの開発 を目指す。

ビジネスモデル確立に向けた取組

ビジネスモデル確立に向けての課題

中小事業者にとってMaaSとは何かイ チャワンジには敷居が高い。 メージがしかない。

スマートなサービスを生み出すための資 源(データ)がない。あるいは整理されて

自動運転車両が開発されても, 走行させるための専用レーンや通信環境, 磁気 マーカーがない。

笽 紐 纪 妆 歐

交通系データ, インフラ系データ等のモデ ル検討を進め活用・蓄積 地域バス事業者,その他商業事業者等に おけるGTFSデータの整備を促進 プレーヤーの拡大

道路空間の環境整備 交通系データの活用・蓄積 実証実験により具体的課題を掘り起こし、 実装に向けて更なる検討

実装フィールドの早期整備(データ蓄積・道路空間環境整備)により,取組を加速

取組の実現によるビジネス環境の変化

都市データプラットフォームの構築

M a a Sの実現

部もが便利に移動可能となり, 賑わい あるコンパクトシティ, 特色ある地域観 光拠点に人が集まる。

データ駆動型の新たなサービスが生ま

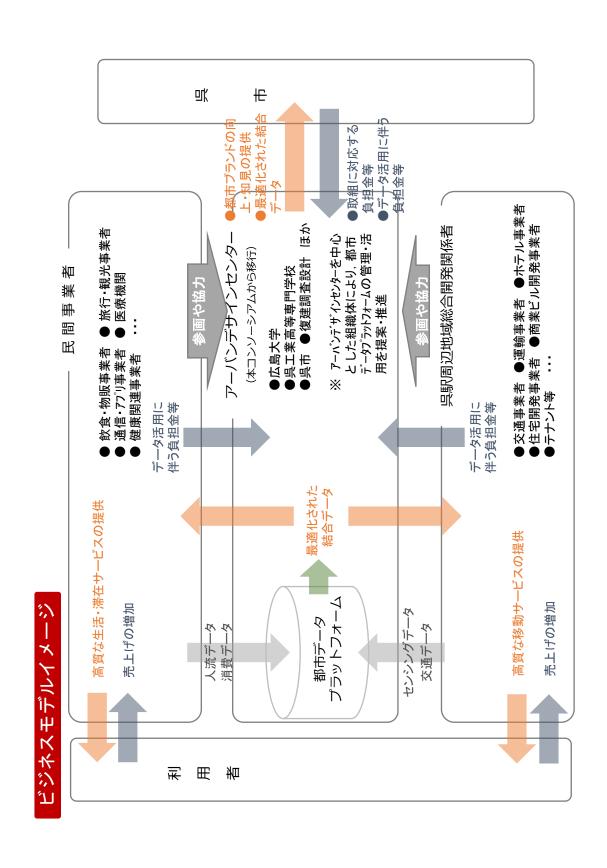
●安定的なデータ活用が可能となり、

●データ駆動型サービスが展開され,エリ

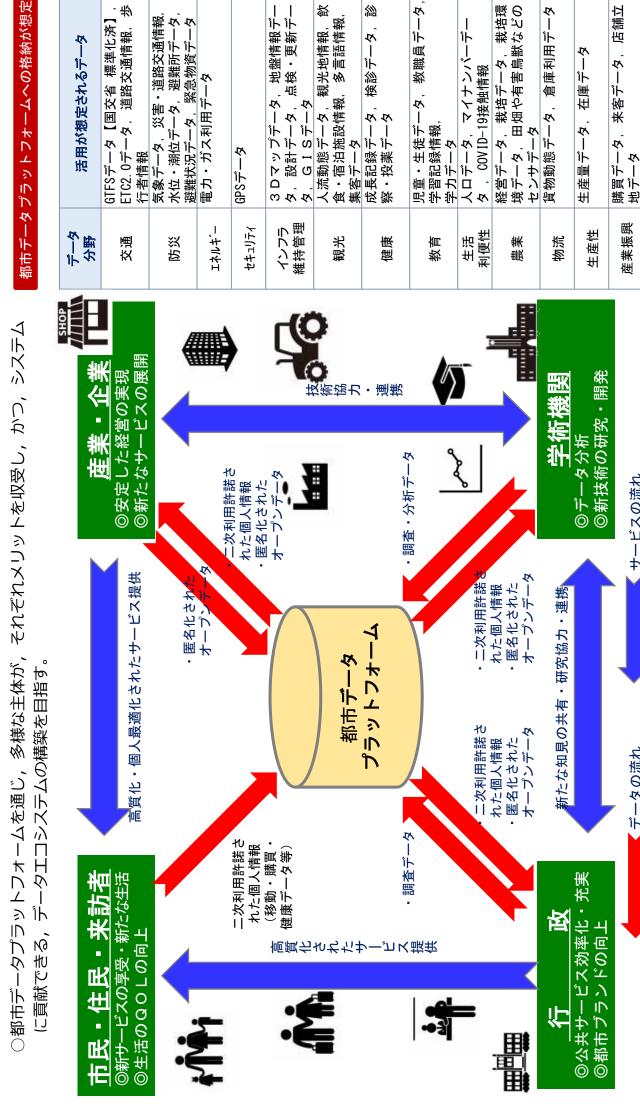
アの価値が高まる。

が来訪者にリアルタイムで提供される。)各エリアの特性に応じた「エリア広告」

次世代モビリティの導入


- ●持続可能な公共交通体系が確立され、 移動弱者の外出が増える。
- ●「動く店舗」など, 新たなビジネスの幅が

防災機能の強化


自動運転に向けた道路空間の環境整備により,災害時でも混雑しない交通体系を確保し,安心なビジネスフィールド

持続可能な取組とするための方針 . გ

○交通事業者をはじめとする各種事業者は,都市データプラットフォームのデータを活用して,新サービス提供などによる新たなビジネスモデルの構築を目指す。

データ利活用の方針

都市データプラットフォームへの格納が想定されるデータ(再掲)

災害情報提供,避難情報 提供,避難所活動支援

約·決済, 渋滞情報提供

E1C2.0データ, 道路交通情報, 歩

GTFSデータ【国交省 標準化済】

活用が想定されるデータ

気象データ,災害・道路交通情報。 水位・潮位データ、避難所データ、 避難状況データ,緊急物資データ

行者情報

ルート検索・乗り物予

活用が想定される

サービス分野

観光情報検索, 宿泊施設 検察・予約・決済

憌

食·宿泊施設情報,多言語情報

人流動態データ,観光地情報,

ナータ

健康リスク評価,

紭

検診データ

成長記録データ, 察・投薬データ

集客データ

遠隔地医療 学習支援,教育体制の効

率化(遠隔教育等)

行政サービスの効率化

マイナン バーゲー

人ロゲータ、

学力データ

農業生産・経営の効率

栽培環

経営データ、栽培データ、

, COVID-19接触情報

公共施設維持管理の効率

地盤情報デー

3 ロマップデータ

GPSデータ

化·最適化

タ,設計データ,点検・更新デー タ,GISデータ

子ども・高齢者の見守り

エネルギー利用最適化,

電力・ガス利用データ

省エネ意識の醸成

四日

販売促進・最適化, 計画支援

店舗立

来客データ,

データ の流れ

新商品開発マッチング

生産の効率化・最適化

在庫データ

生産量データ,

輸送の効率化・最適化

貨物動態データ,倉庫利用データ

境データ,田畑や有害鳥獣などの

カンサデータ

横展開に向けた方針 4.5

呉市の中心市街地,斜面地域,中山間地域等が抱える課題は,同様の他地域においても共通する課題と想定される。このため,呉市において先行的にノウハウの蓄積 とモデル化を進め, 全国へと展開して行く。

エリア内モデルの構築

- 交通まちづくりに向けた交通社会実験 のエリア内実証
- 都市データプラットフォームの構築を 見据えた多分野へのサービス実装

公・民・学の連携ネットワーク

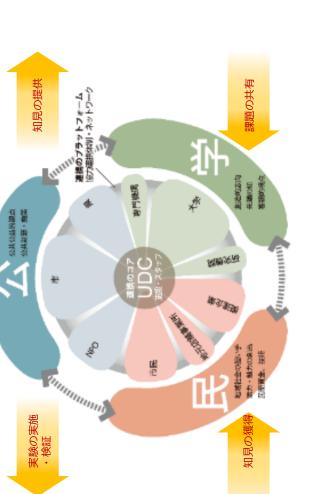
- 公・民・学の連携組織であるアーバンデザインセンターを設立
- アーバンドザインセンターの 多様なネットワークを活かし エリア内の取組を情報交換

都市間連携・全国展開

- 共通の都市課題を抱える都市への展開
- 技術的知見を活用できる都市への展開

【商店街/アーケード】

燃料電池バス 実証実験 (R2 呉市)



グリーンスローモビリディ 実証実験 (R3 広島大学 藤原研究室ほか)

[市街地]

自動運転バス実証実験 (R3 呉市)

附属資料

市民生活·防災分野

環境分野

分散型エネルギーシステムの導入 災害に強く,環境性の高い

取組例①

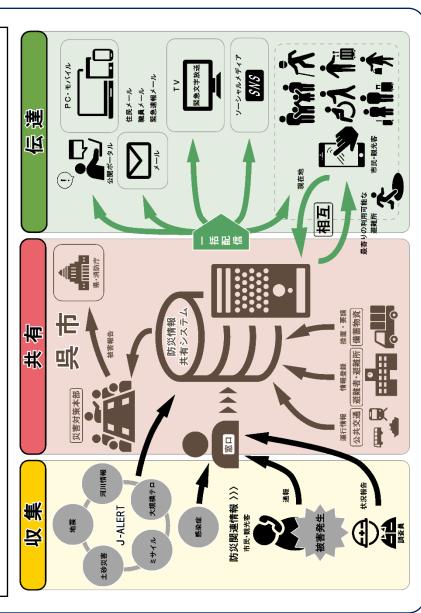
した省電力,低炭素化に向けて,市内の防災拠点等を起点に,従来の「大規模 電源と需要地を系統でつなぐ電力システム」から「分散型エネルギーリソース 平成30年7月豪雨災害を踏まえた電力供給システムの強靭化, も柔軟に活用する新たな電力システム」への変革に取り組む。

モビリアイ

燃料電池バスやEV車の導入により,災害時に移動可能 な電力供給基地を実現

コージェキフーション

公田石


システム等を,空調やバッ クアップ電源として導入 ガスコージェヤフーション エネルギーロスが少ない することにより、災害時 こも電力供給可能

太陽光発電など, 低炭素 社会の実現に向けた, CO2フリー電力の活用

市民生活·防災分野

誰でも確実に災害情報を認知できる 情報伝達手段の確立 取組例②

気象情報,災害情報,避難所情報等を統合し,AIやIoI等の先端技術を用いて,災害発生時に地域住民だけでなく,外国人を含む観光客など誰でもが、個々の状況を適切に判断し,最適な防災・避難行動を選択する支援システムの 構築を目指す。

従来電力

官民連携イメージ (分野別取組例) 【参考】 官民連携プラットフォーム

子育て・教育分野

取給例③

X

行政経営分野

者い世代が安心して子供を産み,育てられる, 「子育て・教育」環境の構築

AIやIoT等の先端技術を用いて、若い世代の誰でもが、出産・子育てに関する不安や雇用や収入の不安定さ、仕事と子育てに関する不安などを抱くことなく、安心して出産・子育てを行うことができる環境づくりを進める。

◆出産・子育て

✓ 医療機関等と連携した子育てイベント情報や相談窓口予約, 保育園・小学校情報の提供など,子育て世代が必要とする情報を集約するサイトの構築

金

- ✓ 遠隔授業による多様な学習機会の確
- グローバル人材の育成に向けた,世界中とつながる101教育の実践

●見守り

イ 子供たちの安全を守る,スマートフォン,GPS,地域カメラなどを活用した見守リシステムの構築

◆雇用·収入確保

- / テレワークの推進
- ✓ 託児所付きワークスペース(シェア オフィス)の確保
- / クラウドンーシングの強化

市民生活·防災分野

都市

都市基盤分野

取組例④ 都市の各種流動データの収集・活用による, スマートプランニングの実施

通信ネットワーク技術、センシング技術を活用し、地域における人の流れや観光客等の行動パターンデータを収集・分析し、地域における回遊性向上、地域モビリティとの連携強化、街路空間づくりなどの施策展開に活用する。

◆データの収集

- ✓ AIによる画像認識データ蓄積
- / データの蓄積
- ✓ 他データとの連携(関連付け)

◆データ等の活用

- / 交通量の最適化
- ✓ 交通ダイヤ,ルートの最適化
- ✓ ウォーカブルなまちづくり推進
- / データの可視化
- ・ ナータの叫祝化 ✓ 子供・高齢者の見守り

◆データの分析・予測

- ✓ 歩行者の分布・混雑状況の分析
- ✓ 時間・曜日等別歩行者動向分析
- ✓ 回遊行動分析
- ✓ 観光客の行動パターン分析

52

産業分野

行政経営分野

生産性が高い、 スマート農業の実現 作業負担が小さく.

取給例⑤

ロボット技術やAIやIoT等の先端技術を用いたスマート農業の実現により, 農業における作業負担を軽減するとともに、若者にも魅力ある,生産性が高 , 儲かる農業の実現を図る。あわせて, これまで培われてきた栽培技術を

▶作業負担の軽減

- 自動運転車両の実装
- ドローンの活用
- 農作物の生育管理
- 屋内型人工栽培技術

/ AIを用いた気象や市 場情報分析による, 販売価格の予測

◆技術の継承

ᄼ ビッグデータの蓄積・解析 / 暗黙知の見える化

産業分野

取組例⑥

福祉健康分野

誰でもが安心して,健康的に暮らすことができる,

スマートウェルネスシティの実施

ロボット技術の導入による医療従事者の負担の軽減や高齢者を抱える家族の AIやIoT等の先端技術を活用することにより,リアルタイムでの健康状態 の把握や見守りを実現し、病気の早期発見、予防医学などを進める。また、 負担軽減につながる仕組みづくりを進める。

◆ヒューマンデータの活用

- ᄼ ヒューマンデータのモニタリング
- ✓ オーダーメイド治療・健康管理の実<mark>施</mark>
- / 医療従事者によるカルテの共有

医療従事者等の負担軽減

- ✓ 医療支援, 介護支援ロボットの導入
 - / VI W 斯
- 自動記録電子カルテの導入
- 遠隔服薬指導の実施

▶健康寿命の延伸

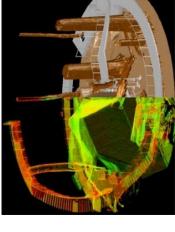
- ✓ 遠隔健康指導の実施
- 高齢者の外出機会の創出

◆高齢者・その家族の負担軽減

- 遠隔医療の実施
- 処方箋薬の宅配サービス
 - 高齢者の見守り

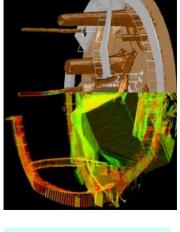
都市基盤分野

取組例⑦


行政·経営分野

センシング技術とデータ統合による、インフラ マネジメント及び行政サービスの効率化

を継続的に計測し,公共インフラの維持・管理に活用する。また,行政手続 AIやIoT等の先端技術を用いて,公共空間の利用や管理に必要となる情報 き等の効率化,省力化を推進する。


〇都市基盤整備

- ✓ 3次元位置情報地図の基盤構築
- インフラ維持管理情報のDB化・一元化
- 有体物件のDB化
- / センサーを用いた溢水情報等の把握

〇行政手続き等の効率化

- / オンライン申請化
- / キャッシュレス化
- ノペーパーレス化
- / パブリックコメントのスマート化

環境分野

市民生活·防災分野

未来につなげる循環型社会形成のための ICTを活用したエコアクション 取給例⑧

大量生産,大量消費,大量廃棄の社会経済システムは,豊かさや快適さを もたらした一方で,様々な環境問題を生じさせてきました。生活利便性と環 境保全を両立した質の高い循環型社会を構築し、より良い未来で誰もが暮 しやすい街の実現を目指します。

▶スマートなごみ収集管理

- ✓ ごみ収集車の位置情報をマッピング
- イ収集したごみの量をクラウドに送りビッグデータ化
- ✓ データをAIで分析し効率的な収集ルートを作成
- ✓ SNSを活用したごみの個別収集
- ごみ出しアプリ (ごみ分別・カレンダー・不法投棄報告)

◆ICTを活用した食品ロス対策

- / AI需要予測
- / WEBマッチングサービス
- ノードシェアリングプラット

フォームの構築

▶スマートな市営墓地管理

- / データによる墓地の一元管理
- 合葬式墓地の整備
- / ネット霊園に集約し利用者は

バーチャルで墓参り

市民生活·防災分野

取組例③ 多様化・大規模化する火災や自然災害を鎮圧する Society 5.0時代の消防活動イノベーション

今後発生が懸念されている南海トラフ地震や首都直下地震が発生した際には、基大な被害が予想され、消防隊が現場に近づけない等の大きな課題があります。これらの災害に対応するため、AIやロボティクスなどの先端技術を活用した消防活動の取り組みが求められています。

▶消防活動のさらなる効率化

- ✓ SNSによる災害情報の収集
- V N1枚急需要分析(季節,気象,場所曜日等)による救急隊員の配備
- ✓ 消防活動マニュアルのAI化


◆災害予防啓発のデジタル化

- ✓ デジタルサイネージによる情報発信
- ✓ VRを活用した火災予防啓発
- ✓ 災害ハザードマップのデジタル化 (災害予測, 3Dマップ)

▶次世代テクノロジーによる災害救助活動

- ✓ 飛行型偵察・監視ロボット,放水ロボットの導入
- ✓ ドローンとサーモグラフィカメラを活用した消火活動
- / ドローンとソナーを活用した水難救助

女化・スポーツ分野

取組例⑪ WR・センシング技術を活用した文化の継承及び スポーツの普及促進

地域の伝統文化は、次世代に継承していくべき貴重な財産であるが、地域の少子高齢化等により難しい状況になっている。また、スポーツ分野においては、科学的解析による更なるレベルアップが求められている。VRなどの先端技術を活用し、地域の一体感や魅力づくり、活力の醸成を目指す。


◆ICTを活用した文化の保存・継承

- ✓ VR・ARによる文化財の適正保存
- ✓ VR・ARIこよる祭りの継承

◆ICTを活用したスポーツの普及促進

- / センシング技術活用によるトップアスリートの育成
- ✓ ローカル5G活用によるVRスポーツ観戦

子育て・教育分野

GIGAスクール構想の実現に向けた、先端技術を 活用した教育の推進 取組例⑪

多様な子供たちを誰一人取り残すことなく,子供たち一人一人に公正に個別最適化され,資質・能力を一層確実に育成することが求められている。こ れまでの教育の実践と先端技術のベストミックスを図ることにより,教師・ 児童生徒の力を最大限に引き出す。

◆個別最適化された授業

- / AIによる子供の習熟状況に応じた個別学習
- AIによる進路相談
- 部活動のオンライン指導

◆問題を抱えた子供への対応

- ✓ 不登校などの子供のための遠隔授業
 - 家庭・学校・医師とのセキュアな 情報連携ツールの導入

▶学校内でのICT技術の活用

- / オンライン参観
- **^ オンラインオープンスケール**
- ✓ 防犯カメラを活用した顔認証による 不審者への対策

スマートシティの実装に向けた検討調査(その12)

報告書

令和3年3月

国土交通省 都市局 $\mp 100\text{-}8918 \quad 東京都千代田区霞が関 <math>2-1-3$ TEL: 03-5253-8111(代表) FAX: 03-5253-1591

委託先: KUREスマートシティコンソーシアム (代表者) 復建調査設計株式会社 広島県広島市東区光町二丁目 10 番 11 号